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Abstract. The TB-LMTO-ASA method is reviewed and generalized to an accurate
and robust TB-NMTO minimal-basis method, which solves Schrödinger’s equation to
Nth order in the energy expansion for an overlapping MT-potential, and which may
include any degree of downfolding. For N = 1, the simple TB-LMTO-ASA formalism is
preserved. For a discrete energy mesh, the NMTO basis set may be given as: χ(N) (r) =
∑

n φ (εn, r) L
(N)
n in terms of kinked partial waves, φ (ε, r) , evaluated on the mesh,

ε0, ..., εN . This basis solves Schrödinger’s equation for the MT-potential to within an
error ∝ (ε − ε0) ... (ε − εN ) . The Lagrange matrix-coefficients, L

(N)
n , as well as the

Hamiltonian and overlap matrices for the NMTO set, have simple expressions in terms
of energy derivatives on the mesh of the Green matrix, defined as the inverse of the
screened KKR matrix. The variationally determined single-electron energies have errors
∝ (ε − ε0)2 ... (ε − εN )2 . A method for obtaining orthonormal NMTO sets is given and
several applications are presented.

1 Overview

Muffin-tin orbitals (MTOs) have been used for a long time in ab initio calcu-
lations of the electronic structure of condensed matter. Over the years, several
MTO-based methods have been devised and further developed. The ultimate aim
is to find a generally applicable electronic-structure method which is accurate
and robust, as well as intelligible.

In order to be intelligible, such a method must employ a small, single-electron
basis of atom-centered, short-ranged orbitals. Moreover, the single-electron Ha-
miltonian must have a simple, analytical form, which relates to a two-center,
orthogonal, tight-binding (TB) Hamiltonian.

In this sense, the conventional linear muffin-tin-orbitals method in the atomic-
spheres approximation (LMTO-ASA) [1,2] is intelligible, because the orbital may
be expressed as:

χRL (rR) = φRL (rR) +
∑
R′L′

φ̇R′L′ (rR′) (HR′L′,RL − ενδR′RδL′L) . (1)

Here, φRL (rR) is the solution, ϕRl (εν , rR)Ylm (r̂R) , at a chosen energy, εν , of
Schrödinger’s differential equation inside the atomic sphere at site R for the
single-particle potential,

∑
R vR (rR) , assumed to be spherically symmetric in-

side that sphere. Moreover, rR ≡ r − R and L ≡ lm. The function ϕRl (ε, r)

H. Dreyssé (Ed.): Workshop 1998, LNP 535, pp. 3−84, 1999.
 Springer-Verlag Berlin Heidelberg 1999



4 O.K. Andersen et al.

thus satisfies the one-dimensional, radial Schrödinger equation

∂2

∂r2 rϕRl (ε, r) = −
[
ε − vR (r) − l (l + 1)

r2

]
rϕRl (ε, r) . (2)

In (1), φ̇RL (r) are the energy-derivative functions, ∂ϕRl (ε, r) /∂ε|εν
Ylm (r̂) .

The radial functions, ϕ and ϕ̇, and also the potential, v, are truncated outside
their own atomic sphere of radius s, and the matrix, H, is constructed in such a
way that the LMTO is continuous and differentiable in all space. Equation (1)
therefore expresses the LMTO at site R and (pseudo) angular momentum L as
the solution of Schrödinger’s equation at that site, with that angular momentum,
and at the chosen energy, plus a ’smoothing cloud’ of energy-derivative functions,
centered mainly at the neighboring sites, and having around these, all possible
angular momenta.

That a set of energy-independent orbitals must have the form (1) in order to
constitute a basis for the solutions Ψi (r) – with energies εi in the neighborhood
of εν – of Schrödinger’s equation for the entire system, is intuitively obvious, be-
cause the corresponding linear combinations,

∑
RL χRL (rR) cRL,i, will be those

which locally, inside each atomic sphere and for each angular momentum, have
the right amount of ϕ̇ – provided mainly by the tails of the neighboring orbitals
– added onto the central orbital’s ϕ. Since by construction each ϕRl (ε, r) is the
correct solution, this right amount is of course εi − εν . In math: since definitions
can be made such that the expansion matrix HR′L′,RL is Hermitian, its eigen-
vectors are the coefficients of the proper linear combinations, and its eigenvalues
are the energies:∑

RL

χRL (rR) cRL,i =
∑
RL

[
φRL (rR) + (εi − εν) φ̇RL (rR)

]
cRL,i

≈
∑
RL

φRL (εi, rR) cRL,i = Ψi (r) . (3)

Hence, H is a 1st-order Hamiltonian, delivering energies and wave functions with
errors proportional to (εi − εν)

2
, to leading order.

First-order energies seldom suffice, and in the conventional LMTO-ASA me-
thod use is made of the variational principle for the Hamiltonian,

H ≡ −∇2 +
∑

R
vR (rR) , (4)

so that errors of order (εi − εν)
2 in the basis set merely give rise to errors of order

(εi − εν)
4 in the energies. With that approach, the energies and eigenvectors are

obtained as solutions of the generalized eigenvalue problem:∑
RL

[〈χR′L′ |H − εν |χRL〉 − (εi − εν) 〈χR′L′ | χRL〉] cRL,i = 0, (5)

for all R′L′. If we now insert (1) in (5), we see that the Hamiltonian and over-
lap matrices are expressed in terms of the 1st-order Hamiltonian, H, plus two
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diagonal matrices with the respective elements〈
φRL | φ̇RL

〉
=

∫ s
0 ϕRl (r) ϕ̇Rl (r) r

2dr,
〈
φ̇RL | φ̇RL

〉
=

∫ s
0 ϕ̇Rl (r)

2
r2dr. (6)

These matrices are diagonal by virtue of the ASA, which approximates integrals
over space by the sum of integrals over atomic spheres. If each partial wave is
normalized to unity in its sphere:

∫ s
0 ϕRl (r)

2
r2dr = 1, then 〈φ | φ〉 is the unit

matrix in the ASA, and the Hamiltonian and overlap matrices entering (5) take
the simple forms:

〈χ |H − εν |χ〉 = (H − εν)
[
1 +

〈
φ | φ̇

〉
(H − εν)

]
(7)

〈χ | χ〉 =
[
1 + (H − εν)

〈
φ̇ | φ

〉] [
1 +

〈
φ | φ̇

〉
(H − εν)

]
+ (H − εν)

[〈
φ̇ | φ̇

〉
−

〈
φ | φ̇

〉2
]
(H − εν) .

Here and in the following we use a vector-matrix notation according to which,
for example χRL (rR) and χRL (rR)

∗ are considered components of respectively
a row-vector, χ (r) , and a column-vector, χ (r)† . The eigenvector, ci, is a column
vector with components cRL,i. Moreover, 1 is the unit matrix, εν is a diagonal
matrix, and H is a Hermitian matrix. Vectors and diagonal matrices are denoted
by lower-case Latin and Greek characters, and matrices by upper-case Latin
characters. Exceptions to this rule are: Y (r̂) , the vector of spherical harmonics,
the site and angular-momentum indices (subscripts) R, L, I, and A, and the
orders (superscripts) L, M, and N. Operators are given in calligraphic, like H,
and an omitted energy argument means that ε = εν .

With the φ (r)’s being orthonormal in the ASA, the LMTO overlap matrix
in (7) is seen to factorize to 1st order, and it is therefore simple to transform to
a set of nearly orthonormal LMTOs:

χ̂ (r) = χ (r)
[
1 +

〈
φ | φ̇

〉
(H − εν)

]−1
(8)

〈χ̂ |H − εν | χ̂〉 ≡ Ĥ − εν =
[
1 + (H − εν)

〈
φ̇ | φ

〉]−1
(H − εν)

= H − εν − (H − εν)
〈
φ̇ | φ

〉
(H − εν) + ...

〈χ̂ | χ̂〉 = 1 +
(
Ĥ − εν

)〈 ˙̂
φ | ˙̂

φ
〉(

Ĥ − εν

)
˙̂
φ (r) ≡ φ̇ (r) − φ (r)

〈
φ | φ̇

〉
.
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Here, the energy-derivative function, ˙̂φ (r) , equals φ̇ (r) , orthogonalized to φ (r) .
Finally, we may transform to a set of orthonormal LMTOs:

χ̌ (r) = χ̂ (r)
[
1 +

(
Ĥ − εν

)〈 ˙̂
φ | ˙̂

φ
〉(

Ĥ − εν

)]−1/2
= (9)

χ̂ (r)
[
1 − 1

2

(
Ĥ − εν

)〈 ˙̂
φ | ˙̂

φ
〉(

Ĥ − εν

)
+ ..

]
〈χ̌ |H − εν | χ̌〉 ≡ Ȟ − εν = Ĥ − εν −
1
2

(
Ĥ − εν

)〈 ˙̂
φ | ˙̂

φ
〉(

Ĥ − εν

)2
− 1

2

(
Ĥ − εν

)2 〈 ˙̂
φ | ˙̂

φ
〉(

Ĥ − εν

)
+ ..

We thus realize that of the Hamiltonians considered, H is of 1st, Ĥ is of 2nd, and
Ȟ is of 3rd order. As the order increases, and the energy window – inside which
the eigenvalues of the Hamiltonian are useful as single-electron energies – widens,
the real-space range of the Hamiltonian increases. For real-space calculations [3–
7], it is therefore important to be able to express a higher-order Hamiltonian as
a power series in a lower-order Hamiltonian like in (8) and (9), because such a
series may be truncated when the energy window is sufficiently wide.

The energy-derivative of the radial function ϕ (ε, r) depends on the energy de-
rivative of its normalization. If we choose to normalize according to:

∫ s
0 ϕ̂ (ε, r)2 r2dr =

1, then it follows that
∫ s
0 ϕ̂ (r) ˙̂ϕ (r) r2dr = 0. Choosing another energy-dependent

normalization: ϕ (ε, r) ≡ ϕ̂ (ε, r) [1 + (ε − εν) o] , specified by a constant o, then
we see that: ϕ̇ (r) = ˙̂ϕ (r)+ϕ (r) o. Changing the energy derivative of the norma-
lization thus adds some ϕ (r) to

.

ϕ̂ (r) and thereby changes the shape of the ’tail
function’ ϕ̇ (r) . Since all LMTOs (1) should remain smooth upon this change,
also H must change, and so must all LMTOs in the set. The diagonal matrix〈
φ | φ̇

〉
, whose elements are the radial overlap integrals: o =

∫ s
0 ϕ (r) ϕ̇ (r) r2dr,

thus determines the LMTO representation, and the first and the last equations
(8) specify the linear transformation between representations. Values of the dia-
gonal matrix

〈
φ | φ̇

〉
exist, which yield short range for the 1st-order Hamiltonian

H and, hence, for the LMTO set (1). Such an H is therefore a two-center TB
Hamiltonian and such an LMTO set is a first-principles TB basis.

In order to obtain an explicit expression forH, one needs to find the spherical-
harmonics expansions about the various sites for a set of smooth MTO envelope
functions. For a MT-potential, which is flat in the interstitial, the envelope fun-
ctions are wave-equation solutions with pure spherical-harmonics character near
the sites. Consistent with the idea behind the ASA – to use ’space-filling spheres’
– is the use of envelope functions with fixed energy, specifically zero, which is a
reasonable approximation for the kinetic energy between the atoms for a valence
state. The envelope functions in the ASA are thus screened multipole potentials,
with the screening specified by a diagonal matrix of screening constants, αRl,
related to the radial overlaps oRl. The expansion of a bare multipole potential
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at site R about a different site R′ is well known:

YL (r̂R)
rl+1
R

∼
∑
R′L′

rl
′
R′YL′ (r̂R′)

Yl′′m′′
(
R̂′−R

)
|R′−R|l′′+1 ∼

∑
R′L′

rl
′
R′YL′ (r̂R′) S0

R′L′,RL .

Here, l′′ ≡ l′ + l and m′′ ≡ m′ − m. With suitable normalizations, the bare
structure matrix, S0, can be made Hermitian. The screened structure matrix is
now related to the bare one through a Dyson equation:

(Sα)−1 =
(
S0)−1 − α, (10)

which may be solved by inversion of the matrix S0 −α−1. This inversion may be
performed in real space, that is in R- rather than in k-representation, provided
that the screening constants take values known from experience to give a short-
ranged Sα.

In the end, it turns out that all ingredients to the LMTO Hamiltonian and
overlap integrals, H,

〈
φ | φ̇

〉
, and

〈
φ̇ | φ̇

〉
, may be obtained from the screened

Korringa-Kohn-Rostoker (KKR) matrix in the ASA:

Kα
R′L′,RL (ε) ≡ pαRl (ε) δR′RδL′L − SαR′L′,RL. (11)

Here, p0 (ε) is a diagonal matrix of potential functions obtained from the radial
logarithmic derivative functions, ∂ {ϕ (ε, s)} ≡ ∂ ln |ϕ (ε, r)| /∂ ln r|s , evaluated
at the MT-radius, and pα (ε) is related to p0 (ε) via the diagonal version of
Equation (10). The results are:

H = εν − K = εν − pṗ−1 + ṗ− 1
2 S ṗ− 1

2 ≡ c + d
1
2 S d

1
2 ,〈

φ | φ̇
〉
=

K̈

2!
=

1
2!

p̈
ṗ
,

〈
φ̇ | φ̇

〉
=

...
K

3!
=

1
3!

...
p
ṗ

, (12)

expressed in terms of the KKR matrix, renormalized to have K̇ = 1 :

K (ε) ≡ K̇− 1
2 K (ε) K̇− 1

2 = p (ε) ṗ−1 − ṗ− 1
2 S ṗ− 1

2 . (13)

This corresponds to the partial-wave normalization:
∫ s
0 ϕ (r)2 r2dr = 1, andK (ε)

is what in the 2nd-generation method [1,2] is denoted −h (ε) , but since the cur-
rent notation identifies matrices by capitals, we cannot use h. The LMTO Hamil-
tonian and overlap matrices are thus expressed solely in terms of the structure
matrix S and the potential functions p (ε) , specifically the diagonal matrices p,
ṗ, p̈, and

...
p . It may be realized that the nearly-orthonormal representation is

generated if the diagonal screening matrix in (10) is set to the value γ, which
makes p̈γ vanish.

For calculations [8–10] which employ the coherent-potential approximation
(CPA) to treat substitutional disorder, it is important to be able to perform
screening transformations of the Green matrix:

Gα (z) ≡ Kα (z)−1 = [pα (z) − Sα]−1
, (14)
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also called the resolvent, or the scattering path operator in multiple scattering
theory [11]. In the 2nd generation MTO formalism, Ga (ε) was denoted gα (ε) .
This screening transformation is:

Gβ (z) = (β − α)
pα (z)
pβ (z)

+
pα (z)
pβ (z)

Gα (z)
pα (z)
pβ (z)

, (15)

and is seen to involve no matrix multiplications, but merely energy-dependent
rescaling of matrix elements. As a transformation between the nearly orthonor-
mal, β=γ, and the short-ranged TB-representation, Eq. (15) has been useful
also in Green-function calculations for extended defects, surfaces, and interfa-
ces [8,10,12–14]. However, calculations which start out from the unperturbed
Green matrices most natural for the problem – namely those obtained from
LMTO band-structure calculations in the nearly orthonormal representation for
the bulk systems – have usually been limited to 2nd-order in z − εν , because
pγ (z) is linear to this order, and because attempts to use 3rd-order expressions

for pγ (z) employing the potential parameter
...
p γ = 3! ṗγ

〈 .

φ̂ |
.

φ̂

〉
, induced false

poles in the Green matrix.
What is not intelligible in the TB-LMTO-ASA method is that the LMTO ex-

pansion (1) must include all L′’s until convergence is reached throughout each
sphere, and all R′’s until space is covered with spheres. This means that the
LMTO-ASA basis is minimal – at most – for elemental, closely packed transi-
tion metals, the case for which it was in fact invented [15]. The supreme com-
putational efficiency of the method soon made self-consistent density-functional
[16] calculations possible, and not only for elemental transition metals, but also
for compounds. In order to treat open structures such as diamond, empty sphe-
res were introduced as a device for describing the repulsive potentials in the
interstices [17]. All of this then, led to misinterpretations of the wave-function
related output of such calculations in terms of the components of the one-center
expansions (1), typically the numbers of s, p, and d electrons on the various
atoms (including in the empty spheres!) and the charge transfers between them.
Absurd statements to the effect that CsCl is basically a neutral compound with
the Cs electron having a bit of s-, more p-, quite some d-, and a bit of f -character
were not uncommon. Many practitioners of the ASA method did not realize that
the role of the MT-spheres is to describe the input potential, rather than the ou-
tput wave-functions. For the latter, the one-center expansions truncated outside
the spheres constitute merely a decomposition which is used in the code for
selfconsistent calculations. The strange Cs electron is therefore little more than
the expansion about the Cs site of the tails of the neighboring Cl p electrons
spilling into the Cs sphere. That latter MT-sphere must of course be chosen to
have about the same size as that of Cl, because only then is the shape of the
Cs+Cl− potential in the bi-partitioned structure well described.

Now, the so-called high partial waves – they are those which are shaped like
rl in the outer part of the sphere where the potential flattens out – do enter
the LMTO expansion (1), but not the eigenvalue problem (5) or the equivalent
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KKR equation:

K (εi) ci = 0, (16)

because they are part of the MTO envelope functions. This property of having
the high-l limit correct is a strength of the MTO method, not shared by for
instance Gaussian orbitals, which are solutions of (2) for a parabolic potential.
There are, however, also other partial waves – like the Cs s-waves, d-waves
in non-transition metal atoms, f -waves in transition-metal atoms, s-waves in
oxygen and fluorine, and in positive alkaline ions, and all partial waves in empty
spheres – which for the problem at hand are judged to be inactive and should
therefore not have corresponding LMTOs in the basis. In order to get rid of
such inactive LMTOs, one must first – by means of (10) or (15) – transform to
a representation in which the inactive partial waves appear only in the ’tails’
(second term of (1)) of the remaining LMTOs; only thereafter, the inactive
LMTOs can be deleted. This down-folding procedure works for the LMTO-ASA
method, but it messes up the connection between the LMTO Hamiltonian (7)-
(13) and the KKR Green-function formalisms (12)-(16), and it is not as efficient
as one would have liked it to be [2]. E.g., the Si valence band cannot be described
with an sp LMTO basis set derived by down-folding of the Si d- as well as all
empty-sphere partial waves [18].

The basic reason for these failures is that the ASA envelopes are chosen to
be independent of energy – in order to avoid energy dependence of the structure
matrix – because this is what forces us to carry out explicitly the integrals
involving all partial waves in all spheres throughout space. What should be done
is to include all inactive waves, ϕI (ε, r) , in energy-dependent MTO-envelopes,
and then to linearize these MTOs to form LMTOs. This has been achieved with
the development of the LMTO method of the 3rd-generation [19,20], and will be
dealt with in the present paper. The reason why energy linearization still works
in a window of useful width, now that the energy dependence is kept throughout
space, is due to the screening of the wave-equation solutions used as envelope
functions [21].

As an extreme example, it was demonstrated in Fig. 7 of Ref. [20] – and
we shall present further results in Fig. 11 below – how with this method one
may pick the orbital of one band, with a particular local symmetry and energy
range, out of a complex of overlapping bands. This goes beyond the construc-
tion of a Wannier function and has relevance for the treatment of correlated
electrons in narrow bands [22,23]. Another example to be treated in the present
paper is the valence and low-lying conduction-band structure of GaAs calculated
with the minimal Ga spd As sp basis [24]. Other examples, not treated in this
paper, concern the calculation of chemical indicators, such as the crystal-orbital-
overlap-projected densities of states (COOPs) [25] for describing chemical pair
bonding. These indicators were originally developed for the empirical Hückel me-
thod where all parameters have been standardized. When one tries to take this
over to an ab initio method, one immediately gets confronted with the problems
of representation. For instance, COOPs will vanish in a basis of orthonormal or-
bitals. Therefore, the COOPs first had to be substituted by COHPs, which are
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Hamiltonian- rather than overlap projections, but still, the LMTO-ASA method
often gave strange results – for the above mentioned reasons [26]. What one has
to do is – through downfolding – to chose the chemically-correct LMTO Hilbert
space and – through screening – choose the chemically correct axes (orbitals) in
this space. Only with such orbitals, does it make sense to compute indicators
[27,28].

A current criterion for an electronic-structure method to be accurate and
robust is that it can be used in ab initio density-functional molecular-dynamics
(DF-MD) calculations [29]. According to this criterion, hardly any existing LMTO
method – and the LMTO-ASA least of all – is accurate and robust.

Most LMTO calculations include non-ASA corrections to the Hamiltonian
and overlap matrices, such as the combined correction for the neglected integrals
over the interstitial region and the neglected high partial waves. This brings in
the first energy derivative of the structure matrix, Ṡ, in a way which makes the
formalism clumsy [2]. The code [30] for the 2nd-generation LMTO method is
useful [31] and quite accurate for calculating energy bands, because it includes
downfolding in addition to the combined correction, as well as an automatic way
of dividing space into MT-spheres, but the underlying formalism is complicated.

There certainly are LMTO methods sufficiently accurate to provide structu-
ral energies and forces within density-functional theory [8,9,34–36,7,38–40], but
their basis functions are defined with respect to MT-potentials which do not
overlap. As a consequence, in order to describe adequately the correspondingly
large interstitial region, these LMTO sets must include extra degrees of freedom,
such as LMTOs centered at interstitial sites and LMTOs with more than one
radial quantum number. The latter include LMTOs with tails of different kine-
tic energies (multiple kappa -sets) and LMTOs for semi-core states. Moreover,
these methods usually do not employ short-ranged representations. Finally, since
a non-overlapping MT potential is a poor approximation to the self-consistent
potential, these methods are forced to include the matrix elements of the full
potential. Existing full-potential methods are thus set up to provide final, nu-
merical results at relatively low cost, but since they are complicated, they have
sofar lacked the robustness needed for DF-MD, and their formalisms provide
little insight to the physics and chemistry of the problem.

One of the early full-potential MTO methods did fold down extra orbitals
and furthermore contained a scheme by which the matrix elements of the full
potential could be efficiently approximated by integrals in overlapping spheres
[38]. The formalism however remained complicated, and the method apparently
never took off. A decade later, it was shown [21,20] that the MT-potential, which
defines the MTOs – and to which the Hamiltonian (4) refers – may in fact have
some overlap: If one solves the exact KKR equations [41] with phase shifts calcu-
lated for MT-wells which overlap, then the resulting wave function is the one for
the superposition of these MT-wells, plus an error of 2nd order in the potential-
overlap. This proof will be repeated in Eq. (28) of the present paper, and in
Figs. 14 and 13 we shall supplement the demonstration in Ref. [20] that this
may be exploited to make the kind of extra LMTOs mentioned above super-
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fluous, provided that the MTO-envelopes have the proper energy dependence,
that is, provided that 3rd generation LMTOs are used. Presently we can handle
MT-potentials with up to ∼60% radial overlap

(
sR + sR′ < 1.6

∣∣R − R′∣∣), and
it seems as if such potentials, with the MT-wells centered exclusively on the
atoms, are sufficiently realistic that we only need the minimal LMTO set de-
fined therefrom [20,42]. It may even be that such fat MT-potentials, without
full-potential corrections to the Hamiltonian matrix, will yield output charge
densities which, when used in connection with the Hohenberg-Kohn variational
principle for the total energy [16], will yield good structural energies [43]. Hence,
we are getting rid of one of the major obstacles to LMTO DF-MD calculations,
the empty spheres.

Soon after the development of the TB-LMTO-ASA method, it was realized
[44] that the full charge density produced with this method – for cases where
atomic and interstitial MT-spheres fill space well – is so accurate, that it should
suffice for the calculation of total energies, provided that this charge density is
used in connection with a variational principle. However, it took ten years before
the first successful implementation was published [45]. The problem is as follows:
The charge density, ρ (r) =

∑occ
i |Ψi (r)| , is most simply obtained in the form of

one-center expansions:

ρ (r) =
∑
R

∑
LL′

∫
occ

φRL (z, rR) ImGRL,RL′ (z) φRL′ (z, rR)
∗ dz

π
, (17)

where G (z) ≡ K (z)−1
, as can be seen from (1) and (3), but these expansions

have terribly bad L-convergence in the region between the atoms and cannot
even be used to plot the charge-density in that region. That was made possible
by the transformation to a short-ranged representation, because one could now
use:

ρ (r) =
∑
RL

∑
R′L′

χRL (rR)
[∫

occ

ImGRL,R′L′ (z)
dz

π

]
χR′L′ (rR′)∗ , (18)

where the L-sums only run over active values, and where the double-sum over
sites converges fast. Nevertheless, to compute a value of χRL (r) with r far away
from a site, one must evaluate the LMTO envelope function, which is a superpo-
sition of the bare ones, YL (r̂R) /rl+1

R , and this means that (18) actually contains
a 4-double summation over sites. At that time, this appeared to make the eva-
luation of ρ (r) at a sufficient number of interstitial points too time-consuming
for DF-MD, although the full charge density from (18) was used routinely for
plotting the charge-density, the electron-localization function [46], a.s.o. In order
to evaluate the total energy, the full charge density must also be expressed in
a form practical for solving the Poisson equation. If one insists on a real-space
method, then fast Fourier transformation is not an option. In Fig. 12 of the
present paper, we shall present results of a real-space scheme [47,48] used in
connection with 3rd-generation LMTOs for the phase diagram of Si [49]. This
scheme is presently not a full-potential, but a full charge-density scheme, and
the calculation of inter-atomic forces has still not been implemented.
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With 3rd generation LMTOs [19,20], the simple ASA expressions (1)-(18) still
hold, provided that φ (ε, r) is suitably redefined, and that K (ε) is substituted by
the proper screened KKR matrix whose structure matrix depends on energy. The
LMTO Hamiltonian and overlap matrices are given in terms of K, and its first
three energy derivatives, K̇, K̈, and

...

K, which are not diagonal. Downfolding,
the interstitial region, and potential-overlap to first order are now all included
in this simple ASA-like formalism [1]. In due course, we thus hope to be able
to perform DF-MD calculations with an electronic Hamiltonian which is little
more complicated than (7), (8), or (9).

A final problem with the LMTO basis is that even with the conventional
spd-basis and space-filling spheres, the LMTO set is insufficient for cases where
semi-core states and excited states must be described by one minimal basis set,
and in one energy panel. This problem becomes even more acute in the 3rd-
generation method where, due to the proper treatment of the interstitial region,
the expansion energy εν must be global, that is, εν is now the unit matrix
times εν , rather than a diagonal matrix with elements ενRlδRR′δLL′ . The same
problem was met when attempting to apply the formally elegant relativistic,
spin-polarized LMTO method of Ref. [50] to narrow, spin-orbit split f -bands.
Finally, as MT-spheres get larger, and as more partial waves are being folded
into the MTO envelopes, the energy window inside which the LMTO basis gives
accurate results shrinks. This means, that the 3rd-generation LMTO method
described in [20] may not be sufficiently robust.

The idea emerging from the LMTO construction (1) seems to be: Divide space
into local regions inside which Schrödinger’s equation separates due to spherical
symmetry and which are so small that the energy dependence of the radial
functions is weak over the energy range of interest. Then expand this energy
dependence in a Taylor series to first order around the energy εν at the center
of interest: φ (ε, r) ≈ φ (r) + (ε − εν) φ̇ (r) . Finally, substitute the energy by a
Hamiltonian to obtain the energy-independent LMTO. The question therefore
arises (Fig. 1): Can we develop a more general, polynomial MTO scheme of
degree N, which allows us to use an Nth-order Taylor series or – more generally
– allows us to use a mesh of N + 1 discrete energy points, and thereby obtain
good results over a wider energy range, without increasing the size of the basis
set ? Such an NMTO scheme has recently been developed [51] and shown to be
very powerful [24]. We shall preview it in the present paper.

Most aspects of the 3rd-generation LMTO method have been dealt with in
a set of lecture notes [19] and a recent review [20]. Here, we shall try to avoid
repetition but, nevertheless, give a self-contained description of two selected
aspects of the new method: the basic concepts and the new polynomial NMTO
scheme, to be presented here for the first time.

We first explain (Sect. 2) what the functions φ (ε, r) actually are in the 3rd-
generation formalism. This we do using conventional notation in terms of sphe-
rical Bessel functions and phase shifts – like in Ref. [21] – and only later, we
renormalize to the notation used in Refs. [19] and [20]. It turns out that the bare
φ’s are the energy-dependent MTOs of the 1st generation [52]. The screened φ’s
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Fig. 1. Quadratic approximation to the energy dependence of a partial wave for a
condensed (Taylor) and a discrete (Lagrange) mesh.

are the screened, energy-dependent MTOs of the 2nd generation [21], with the
proviso that κ2 ≡ ε. This proviso – together with truncations of the screening
divergencies at the sites, inside the so-called screening spheres – is what makes
the screened φ’s equal to the so-called unitary [19] or kinked [20] partial waves
in the formalism of the 3rd generation. We then derive the screened KKR equati-
ons and repeat the proof from Refs. [21] and [20] that overlapping MT-potentials
are treated correctly to leading (1st) order in the potential overlap. Towards the
end of this first section, we introduce the so-called contracted Green function
φ (ε, r)G (ε) , which will play a crucial role in the development of the polynomial
NMTO scheme, and we derive the 3rd-generation version of the scaling relation
(15) for screening the Green function.

In Sect. 3 we show how to get rid of the energy dependence of the kinked-
partial wave set: We first introduce a set of energy-dependent NMTOs, χ(N) (ε, r) ,
which – like the φ (ε, r) set – spans the solutions of Schrödinger’s equation for
the chosen MT-potential, and whose contracted Green function, χ(N) (ε, r)G (ε) ,
differs from φ (ε, r)G (ε) by a function which is analytical in energy. Like in clas-
sical polynomial approximations, we choose a mesh of arbitrarily spaced energies,
ε0, ..., εN , and subsequently adjust the analytical function in such a way that,
χ(N) (ε0, r) = ... = χ(N) (εN , r) . The latter then, constitutes the set of energy-
independent NMTOs. The 0th-order set, χ(0) (r) , is seen to be the set of kinked
partial waves, φ (ε0, r) , at the energy ε0, and the 1st-order set, χ(1) (r) , to be
the set of tangent or chord-LMTOs – depending on whether the mesh is conden-
sed or discrete. For the case of a condensed mesh – which is the simplest – the
matrices, which substitute for the energies in the Taylor series (1) – generalized
to Nth order – turn out to be:

E(M) − εν =

(M−1)
G

(M − 1)!

 (M)
G

M !


−1

, for 1 ≤ M ≤ N, (19)
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in terms of the Mth and the (M − 1)st energy derivatives of the Green matrix.
Moreover, the expressions for the Hamiltonian and overlap matrices are:

〈
χ(N) |H − εν |χ(N)

〉
= −

 (N)
G

N !


−1

(2N)
G

(2N)!

 (N)
G

N !


−1

, (20)

〈
χ(N) | χ(N)

〉
= −

 (N)
G

N !


−1

(2N+1)
G

(2N + 1)!

 (N)
G

N !


−1

,

which, for N = 1, are easily seen to reduce to (7) upon insertion of (12). In
retrospect, it is convenient that these basic NMTO results are expressed in terms
of energy derivatives of the Green matrix G (ε) – rather than in terms of those
of its inverse, K (ε), as we are used to from the LMTO-ASA method (12) –
because if we imagine generalizing (1) to Nth order and using it to form the
Hamiltonian and overlap matrices like in (7), then each matrix will consist of
N2 terms, among which a number of relations can be shown to exist. We also
realize, that the problem mentioned above about using Green matrices beyond
2nd order in z − εν , is solved by using – instead of G (z) – the NMTO Green
function:

〈
χ(N) |z − H|χ(N)

〉−1
=

(N)
G

N !

 (2N)
G

(2N)!
− (z − εν)

(2N+1)
G

(2N + 1)


−1

(N)
G

N !
, (21)

which equals G (z) to (2N + 1)st order. This Green function has the additional
advantage of allowing for a simple treatment of non-MT perturbations. We admit
that this route to energy-independent MTO basis sets has little in common with
the twisted path we cut the first time, but once found, it is easy to accept and
understand the results – which are simple.

In practice, it is cumbersome to differentiate a KKR matrix – not to speak of
a Green matrix – many times with respect to energy. Hence, one uses a discrete
energy mesh. With that, the derivatives in (19) and the pre- and post factors
in (20) and (21) turn out to be divided differences, while those at the centers
of (20) turn out to be the highest derivative of that approximating polynomial
which is fitted not only to the values of G (ε) at the mesh points, but also to its
slopes. Hence, they are related to classical Hermite interpolation [53].

In both Sections 2 and 3, special attention is paid to the so-called triple-
valuedness, because this was not previously explained in any detail, but has
turned out to be crucial for the further developments and will be even more so
when we come to evaluate the inter-atomic forces. A related aspect is the fact
that a screening transformation in the formalism of the 3rd-generation is linear
as regards the envelope functions, but non-linear as regards the NMTOs. This
means, that changing the screening, changes the NMTO Hilbert space. This was
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not the case for 2nd-generation LMTOs. This is the reason why we took care to
denote the nearly-orthonormal and orthonormal LMTO sets arrived at by the
linear transformations (8) and (9) by respectively χ̂ and χ̌, rather than by χγ

and χ⊥, as in the 2nd-generation LMTO scheme, where screening transformati-
ons were linear and denoted by superscripts. Screening transformations like (10)
and (15) still hold for the 3rd-generation structure- and Green-matrices, but the
partial waves providing the spatial factors of the Green function (see(17)) are
different : they have tails extending into the interstitial region. A tail is attached
continuously, but with a kink, at the screening sphere, which is concentric with,
but smaller than, its own MT-sphere, and the resulting kinked partial wave, or
0th-order energy-dependent MTO, is – for the purpose of evaluating its pro-
perties in a simple, approximate way – triple-valued in the shell between these
two spheres. The radii, aRL, define the screening and determine the shape of the
MTO envelopes. Now, for a superposition of kinked partial waves given by a so-
lution of the KKR equations (16), the kinks and the triple-valuedness cancel, but
for a single NMTO, a triple-valuedness of order (r − a)2N+1 (εi − ε0) ... (εi − εN )
– which is the same as the error caused by the energy interpolation – remains.
For this reason: The smaller the screening radii – i.e. the weaker the screening –
the smaller the energy window inside which an energy-independent NMTO set
gives good results. The extreme case is the bare (a → 0) N = 0 set, which is
the set of 1st-generation MTOs [52], but defined without freezing the energy de-
pendence outside the central MT-sphere. The tail-cancellation condition for this
set leads to the original KKR equations [41], which – we know – must be solved
energy-by-energy, that is, the energy window can be very narrow, depending on
the application. Specifically, for free electrons the width is zero.

At the end of Sect. 3, we demonstrate the power of the new NMTO methods
by applying the differential and discrete LMTO, QMTO, and CMTO variational
methods to the valence and conduction-band structure of GaAs using a minimal
Ga spd As sp basis, and to the conduction band of CaCuO2 using only one
orbital, all others being removed by massive downfolding [24]. We also give simple
expressions for the charge density and show the total energy as a function of
volume for the various crystalline phases of Si calculated with the full-charge,
differential LMTO method [47–49]. Finally, numerical results are presented for
the error of the valence-band energy of diamond-structured Si – as a function of
the potential overlap – obtained from LMTOs constructed for a potential whose
MT-wells are centered exclusively on the atoms. In addition, results of a scheme
which corrects for the error of 2nd order in the overlap will be presented [42].

In Sect. 4 we show that energy-dependent, linear transformations of the set
of kinked partial waves – such as a normalization – merely leads to similarity
transformations among the NMTO basis functions and, hence, does not change
the Hilbert space spanned by the NMTO set.

This is exploited in Sect. 5 to generate nearly orthonormal basis sets, χ̂(N) (r) ,
for which the energy matrices defined in (19) become Hermitian, Hamiltonian
matrices, Ĥ(M). We also show how to generate orthonormal sets, χ̌(N) (r) , of
general order, and we demonstrate by the example of the minimal MTO set
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for GaAs that this technique works numerically efficiently – at least up to and
including N = 3. This development of orthonormal basis sets should be impor-
tant e.g. for the construction of correlated, multi-orbital Hamiltonians for real
materials [23,54].

In the last Sect. 6 we show explicitly how – for N = 1 and a condensed mesh
– the general, nearly-orthonormal NMTO formalism reduces to the simple ASA
formalism of the present Overview.

In the Appendix we have derived those parts of the classical formalism for
polynomial approximation – Lagrange, Newton, and Hermite interpolation –
needed for the development of the NMTO method for discrete meshes [53].

2 Kinked Partial Waves

In this section we shall define 0th-order energy-dependent MTOs and show that
linear combinations can be formed which solve Schrödinger’s equation for the
MT-potential used to construct the MTOs. The coefficients of these linear com-
binations are the solutions of the (screened) KKR equations. By renormalization
and truncation of the irregular parts of the screened MTOs inside appropriately
defined screening spheres, these 0th-order energy-dependent MTOs become the
kinked partial waves of the 3rd generation.

If we continue the regular solution ϕRl (ε, r) of the radial Schrödinger equa-
tion (2) for the single potential well, vR (r) , smoothly outside that well, it be-
comes:

ϕRl (ε, r) = nl (κr) − jl (κr) cot ηRl (ε) ≡ ϕ◦
Rl (ε, r) , for r > sR, (22)

in terms of the spherical Bessel and Neumann functions, jl (κr) and nl (κr) ,
which are regular respectively at the origin and at infinity, and a phase shift
defined by:

cot η (ε) =
n (κs)
j (κs)

∂ ln |ϕ (ε, r)| /∂ ln r|s − ∂ ln |n (κr)| /∂ ln r|s
∂ ln |ϕ (ε, r)| /∂ ln r|s − ∂ ln |j (κr)| /∂ ln r|s

.

In the latter expression, we have dropped the subscripts. Note that we no longer
distinguish between ’inside’ and ’outside’ kinetic energies, ε − v (r) and κ2 ≡
ε−Vmtz, and that we have returned to the common practice of setting Vmtz ≡ 0.
If the energy is negative, nl (κr) denotes a spherical, exponentially decreasing
Hankel function. Note also that – unlike in the ASA – the radial function is not
truncated outside its MT-sphere, and is not normalized to unity inside. In fact,
we shall meet three different normalizations throughout the bulk of this paper,
and (22) is the first.
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Fig. 2. Bare Si p MTO according to Eq.(23)

2.1 Bare MTOs

The bare, energy-dependent muffin-tin orbital (MTO) remains the one of the
1st generation [52]:

φRL (ε, r) ≡ YL (r̂) [ϕRl (ε, r) + jl (κr) cot ηRl (ε)]

= YL (r̂)
{
ϕRl (ε, r) + jl (κr) cot ηRl (ε) for r ≤ sR
nl (κr) for r > sR

= YL (r̂) [ϕRl (ε, r) − ϕ◦
Rl (ε, r) + nl (κr)] , (23)

and is seen to have pure angular momentum and to be regular in all space.
The reason for denoting this 0th-order MTO φ (ε, r) , rather than χ(N=0) (ε, r) ,
should become clear later.

In Fig. 2 we show the radial part of this MTO for a Si p-orbital, a MT-sphere
which is so large that it reaches 3/4 the distance to the next site in the diamond
lattice, and an energy in the valence-band, which – in this case of a large MT-
sphere – is slightly negative (see Fig. 11 in Ref. [20]). The full line shows the MTO
as defined in (23), while the various broken lines show it ’the 3-fold way’: The
radial Schrödinger equation for the potential v (r) is integrated outwards, from
the origin to the MT radius, s, yielding the regular solution, ϕ (ε, r) , shown by
the dot-dashed curve. At s, the integration is continued with reversed direction
and with the potential substituted by the flat potential, whose value is defined
as the zero of energy. This inwards integration results in the radial function ’seen
from the outside of the atom’, ϕ◦ (ε, r) , shown by the dotted curve. The inwards
integration is continued to the origin, where ϕ◦ (ε, r) joins the ’outgoing’ solution
for the flat potential, that is the one which is regular at infinity: n (κr) . The
latter is the envelope function for the bare MTO.
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As usual, the envelope-function for the MTO centered at R may be expanded
in spherical-harmonics about another site R′ (�= R):

κnl (κrR)YL (r̂R) =
∑
L′

jl′ (κrR′)YL′ (r̂R′)BR′L′,RL (ε) ,

where the expansion coefficients form the Hermitian KKR structure matrix:

BR′L′,RL (ε) ≡
∑
l”

4π i−l+l
′−l′′CLL′l′′ κnl′′

(
κ
∣∣R − R′∣∣)Y ∗

l′′,m′′

(
R̂ − R′

)
(24)

as conventionally [41] defined, albeit in R-space. The spherical harmonics are
as defined by Condon and Shortley, m′′ ≡ m′ − m, the summation runs over
l′′ = |l′ − l| , |l′ − l| + 2, ..., l′ + l, and i−l+l

′−l′′ is real, because CLL′L′′ ≡∫
YL(r̂)Y ∗

L′(r̂)YL′′(r̂)dr̂.
If for the on-site elements of B (ε) , we define: BRL,RL′ (ε) ≡ 0, and use

the notation: fL (ε, rR) ≡ fl (κrR)YL (r̂R) , as well as the vector-matrix nota-
tion introduced in connection with (7), we may express the spherical-harmonics
expansion of the bare envelope about any site symbolically as:

κn (ε, r) = j (ε, r)B (ε) + κn (ε, r) . (25)

If we now form a linear combination,
∑

RL φRL (ε, rR) cRL, of energy-dependent
MTOs (23), and require that it be a solution of Schrödinger’s equation, then the
condition is that, inside any MT-sphere (R′) and for any angular momentum
(L′) , the contributions from the tails should cancel the jl′ (κr) cot ηR′l′ (ε)-term
from their own MTO, φR′L′ (ε, rR′), thus leaving behind the term ϕR′l′ (ε, r) ,
which is a solution by construction. This gives rise to the original KKR equations
[41]: ∑

RL

[BR′L′,RL (εi) + κ cot ηRl (εi) δR′RδL′L] cRL,i

≡
∑
RL

KR′L′,RL (εi) cRL,i = 0, (26)

which have non-zero solutions, cRL,i, for those energies, εi, where the determi-
nant of the KKR matrix vanishes.

With those equations satisfied, the wave function is

∑
RL

φRL (εi, rR) cRL,i =
∞∑
l′=0

l′∑
m′=−l′

ϕR′l′ (εi, rR′)YL′ (r̂R′) cR′L′,i + (27)

∑
R �=R′

∑
L

[ϕRl (εi, rR) − ϕ◦
Rl (εi, rR)]YL (r̂R) cRL,i

near site R′. Since according to (22) the function ϕ − ϕ◦ vanishes outside its
own MT-sphere, the terms in the second line vanish for a non-overlapping MT-
potential so that, in this case, (27) solves Schrödinger’s equation exactly. If
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the potential from a neighboring site (R) overlaps the central site (R′), then
ϕRL − ϕ◦

RL tongues stick into the MT-sphere at R′. The radial part of such a
tongue is 1

2 (sR − rR)
2
vR (sR)ϕRL (sR) , to lowest order in sR − rR, as may be

seen from the radial Schrödinger equation (2). Let us now operate on the smooth
function Ψi (r) ≡

∑
RL φRL (εi, rR) cRL,i , of which (27) is the expansion around

site R′, with H − εi as given by (4) to find the error:

(H − εi)Ψi (r) =∑
R′

vR′ (rR′)
∑
R �=R′

∑
L

[ϕRl (εi, rR) − ϕ◦
Rl (εi, rR)]YL (r̂R) cRL,i (28)

∼ 1
2

pairs∑
RR′

vR′ (sR′)
[
(sR′ − rR′)2 + (sR − rR)

2
]
vR (sR)Ψi (r) .

This shows that the wave function (27) solves Schrödinger’s equation for the
superposition of MT-wells to within an error, which is of second order in the
potential overlap [21,20].

2.2 Screened MTOs

Screening is the characteristic of 2nd-generation MTOs and was first discovered
as the transformation (8) to a nearly-orthonormal representation, in which the
Hamiltonian is of second order [55,56]. Shortly thereafter it was realized that
there exists a whole set of screening transformations which may be used to make
the orbitals short ranged, so that the structure matrix may be generated in real
space. It was also realized that the screening transformation could be used to
downfold inactive channels and, hence, to produce minimal basis sets [1,18,44].
These applications were all for the ASA with κ2=0. Only long time after [21],
did it become clear that screening would work for positive energies as well, and
at that time a fourth virtue of screening became clear, namely, that sceening
the range of the orbitals, simultaneously reduces their energy dependence to the
extent that the full energy dependence may be kept in the interstitial region, thus
making the κ2=0-part of the ASA superfluous. Most of this was shown in the last
paper on the 2nd-generation formalism [21]. Nevertheless, this paper was unable
to devise a generally useful recipe for choosing the energy-dependent screening
constants, it failed to realize that screening allows the return to: κ2=ε, and for
those reasons it missed the elegant energy-linearization of the MTOs achieved
by the 3rd generation.

The screened envelopes of the 2nd-generation method are linear superpositi-
ons,

nα (ε, r) ≡ n (ε, r)Sα (ε) , (29)

of the envelope functions, n (ε, r) , with the property that the spherical-harmonics
expansions of the set of screened envelopes be:

κn (ε, r)Sα (ε) ≡ κnα (ε, r) = jα (ε, r)Bα (ε) + κn (ε, r) , (30)
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which are (25) with the substitutions:

jl (κr) → jαRlm (ε, r) ≡ jl (κr) − nl (κr) tanαRlm (ε) , (31)

and: B (ε) → Bα (ε) , which will be determined below. In contrast to its bare
counterpart, a screened envelope does not have pure angular momentum, i.e.,
cannot be factorized as a radial function times a spherical harmonics, and it
depends explicitly on its surroundings. The background phase shifts α (ε) – which
may even depend on m (see for instance Fig. 11) – specify the shapes of the
screened envelopes. Whereas the bare envelopes are regular in all space – except
at their own site where they diverge like Ylm (r̂) /rl+1 – the screened envelopes
diverge at any site where there is a finite background phase shift in at least one
L-channel.

Note that only in the Overview did we use ASA κ2=0-notation with Greek
letters denoting screening constants and Sα the structure matrix. In the bulk
of the present paper, we use Greek letters to denote background phase shifts,
and Bα and Sα to denote respectively the structure matrix and the screening
transformation.

We now find the screened structure matrix and the transformation matrix by
expanding also the bare envelope on the left hand side of (30) by means of (25).
Comparisons of the coefficients to κnL′ (ε, rR′) and jL′ (ε, rR′) yield respectively:

Sα (ε) = 1 − tanα (ε)
κ

Bα (ε) , and : Bα (ε) = B (ε)Sα (ε) (32)

with the quantities regarded as matrices, e.g. κ−1 tanα is considered a diagonal
matrix with elements κ−1 tanαRL δRR′δLL′ . As a result of (32):

Bα (ε)−1 = B (ε)−1 +
tanα (ε)

κ
, (33)

which shows that, like the bare structure matrix, also the screened one is Her-
mitian. In contrast to the bare structure matrix, the screened one has non-
vanishing on-site elements. For background phase shifts known to give a short-
ranged Bα (ε) , the inversion of the matrix B (ε) + κ cotα (ε) , implied by (33),
may be performed in real space, although the bare structure matrix is long-
ranged. Eq. (33) is the κ2=ε equivalent of the ASA ’Dyson equation’ (10).

For the inactive channels (RL ≡ I) , we choose the background phase shifts
to be equal to the real phase shifts:

αI (ε) ≡ ηI (ε) (34)

so that for these channels,

jαI (ε, r) = jI (κr) − nI (κr) tan ηI (ε) = −ϕ◦
I (ε, r) tan ηI (ε) .

That is, we shape the set of screened envelope functions in such a way that, for
the inactive channels, the radial functions, ϕ◦

I (ε, r) , may be substituted smoothly
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by the regular solutions, ϕI (ε, r) , of the radial Schrödinger equation. This is
what we call downfolding. This substitution makes the screened envelopes be-
come the so-called screened spherical waves, ψ, of the 3rd-generation method.
Only the screened spherical waves corresponding to the remaining, so-called ac-
tive channels (RL = A) will be used to construct the MTO; they are:

ψα
RL (ε, rR) ≡ nαRL (ε, rR) + (35)∑
I

[ϕ◦
I (ε, rR′) − ϕI (ε, rR′)]

tan ηI (ε)
κ

YI (r̂R′)Bα
I,RL (ε) ,

which – in contrast to nαRL (ε, rR) – are regular in all inactive channels, albeit
irregular in the active channels. In (35), I ≡ R′L′. Below, we shall choose to
truncate the active channels inside their screening spheres. Due to the augmen-
tation (substitution), the screened spherical waves do not transform linearly like
(29).

For the partial waves of high l, the phase shifts vanish due to the dominance
of the centrifugal term over the potential term in the radial Schrödinger equation
(2). As a consequence, the matrices involved in the Dyson equation (33) – whose
indices run over all active as well as inactive channels – truncate above a certain
l of about 3 – 4.

Before specifying our choice of background phase shifts for the active chan-
nels, let us define the energy-dependent, screened MTO analogous to the third
equation (23) as the (augmented) envelope function, plus a term proportional
to the function ϕ − ϕ◦, which vanishes (quadratically) outside the central MT-
sphere and has pure angular-momentum character. That is:

φαRL (ε, rR) ≡ YL (r̂R) [ϕRl (ε, rR) − ϕ◦
Rl (ε, rR)]

tan ηRl (ε)
tan ηαRL (ε)

+ ψα
RL (ε, rR)

≡ YL (r̂R) [ϕαRl (ε, rR) − ϕ◦α
Rl (ε, rR)] + ψα

RL (ε, rR) (36)

and RL ∈ A. Here, the coefficient to ϕ − ϕ◦ has been chosen in such a way
that, in its own channel and outside any other MT-sphere, the screened MTO is
ϕα + jα cot ηα plus a term from the diagonal element of the screened structure
matrix.

To check this, we project onto the ’eigen-channel,’ making use of (35), (30),
(22), and (31), and neglecting any contribution from ϕI (ε, rR′)’s from overlap-
ping neighboring MT-spheres:

PRLφ
α
RL (ε, rR) = ϕαRl (ε, rR) − ϕ◦α

Rl (ε, rR) + PRLψ
α
RL (ε, rR)

= [ϕ − n+ (jα + n tanα) cot η]
tan η

tan ηα
+ n+ jα

Bα

κ

= ϕα + jα cot ηα − n
tan η − tanα

tan ηα
+ n+ jα

Bα

κ

= ϕα + jα cot ηα + jα
Bα

κ
(37)
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For simplicity, we have dropped all arguments and indices in the last three lines.
We see that the new phase shift, ηα, is given by:

tan ηαRL (ε) ≡ tan ηRl (ε) − tanαRL (ε) , (38)

as expected for the phase shift on the background of α. This is the same trans-
formation as the one obtained from (33) for −Bα (ε)−1

. The definition of the
renormalized free radial solution given in (36) may be written as:

ϕ◦α
RL (ε, r) ≡ nl (κr) − jαRL (ε, r) cot ηαRL (ε) (39)

= [nl (κr) tan ηRl (ε) − jl (κr)] cot ηαRL (ε) ,

and ϕαRl (ε, rR) is the solution of the radial Schrödinger equation, normalized in
such a way that it matches onto ϕ◦α

RL (ε, r) at the MT radius, sR. The definition
(39) reduces to (22) when α = 0.

The set of screened MTOs now consists of the screened MTOs (36) of all
active channels. Since the ϕ−ϕ◦ function has pure angular-momentum character,
the mixed character of the screened MTO stems solely from the ψ-function. The
result of projecting the screened MTO onto an active channel R′L′ different from
its own is seen from (30) to be:

PR′L′φαRL (ε, rR) = PR′L′ψα
RL (ε, rR) = jαR′L′ (ε, rR′)

Bα
R′L′,RL (ε)

κ
, (40)

when rR′ is so small that r lies inside only one MT-sphere, the one centered at
R′. From (40) and (37) it is then obvious that, in order to get a smooth linear
combination

∑
A φαA (ε, rA) cαA of screened MTOs, all jα-functions must cancel.

This leads to the condition that the energy must be such that the coefficients
can satisfy∑

A

[Bα
A′A (εi) + κ cot ηαA (εi) δA′A] cαA,i ≡

∑
A

Kα
A′A (εi) cαA,i = 0, (41)

for all active R′L′ ≡ A′. These are the screened KKR equations, and Kα (ε) is
the screened KKR matrix. If these equations are satisfied, the linear combination
of screened MTOs is:∑

A

φαA (εi, rR) cαA,i =
∞∑
l′=0

∑
m′

ϕαR′L′ (εi, rR′)YL′ (r̂R′) cαR′L′,i + (42)∑
R �=R′

∑
L

[ϕαRL (εi, rR) − ϕ◦α
RL (εi, rR)]YL (r̂R) cαRL,i

near site R′. As long as the MT-spheres do not overlap, this is a solution of
Schrödinger’s equation for the MT-potential and, if the potentials overlap, then
the ϕ − ϕ◦ tongues from the neighboring sites in the second line of (42) make
the wave function correct to first order in the overlap [20]. This is exactly as
in (27). The summation over spherical-harmonics around the central site inclu-
des the contributions −ϕI (ε, rR′)κ−1 tan ηI (ε)

∑
ABα

I,A (ε) cαA,i provided by the
screened-spherical-wave part of the MTO (see (36) and (35)).
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Although energy-dependent MTO sets with different screenings are not li-
nearly related, they all solve Schrödinger’s equation for the MT-potential used
for their construction via the corresponding KKR equation. E.g. had one chosen
a representation in which a channel making a significant contribution to a wave
function Ψi (r) with energy εi = ε were downfolded, then the corresponding so-
lution of the KKR equation (41) would arise from Bα (ε) being long ranged and,
as a function of ε, going through a zero-pole pair near εi. If the energy were now
fixed at some energy εν , and the energy-independent set φα (εν , r) were used as
the 0th-order MTO basis in a variational calculation, then a useful result could
in principle be obtained, but only if εν were chosen very close to εi.

Fig. 3. Si p111 member of a screened spd-set of 0th-order MTOs (see text and
Eqs.(36),(44)-(47)).

2.3 Hard-Sphere Interpretation and Redefinitions

We now wish to choose the background phase shifts for the active channels in
a way which reduces the spatial range and the energy dependence of the MTO
envelopes. It is obvious, that for the orbitals to be localized, they must have
energies below the bottom of the continuum of the background – defined as the
system which has the same structure as the real system, but has all phase shifts
equal to those of the background. Hence, the active α (ε)’s should be defined
in such a way that the energy band defined by:

∣∣B0 (ε) + κ cotα (ε)
∣∣ = 0, lie as

high as possible.
The discovery of a useful way of determining this background, turned out to

be the unplanned birth of the 3rd MTO generation [19,20]. Realizing that the
weakest point of the ASA was its solution of Poisson’s – and not Schrödinger’s –
equation, and unhappy with the complexities of existing full-potential schemes,
we [57] were looking for those linear combinations of Hankel functions – like (29)
– which would fit the charge density continuously at spheres. With Methfessel’s
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formulation [35]: What we wanted was those solutions of the wave equation which
are YL (r̂R) at their own sphere and for their own angular momentum, and zero
at all other spheres and for all other angular momenta. This set was therefore
named unitary spherical waves. The solution to this boundary-value problem is
of course a particular screening transformation (33).

Our way of defining the background was thus in terms of hard screening-
spheres for the active channels; the larger the screening spheres, the larger the
excluded volume and the higher the bottom of the continuum. The screening
spheres are not allowed to overlap – at least not if all l-channels were active,
because then a unitary spherical wave would be asked to take both values, 1
and 0, on the circle common to the central and an overlapping sphere. As a
consequence, in order to reduce the range and the energy dependence of the MTO
envelope functions, the screening spheres should in general be nearly touching.
Now, since the screening radii, , control the shapes of the envelopes, the relative
sizes of the screening spheres should be determined by chemical considerations,
i.e. the a’s may be covalent- or ionic radii in order that results obtained from an
electronic-structure calculation be interpretable in terms of covalency, ionicity
etc. Referring to the discussion in the Overview, one could say: The MT-spheres
(s) are potential-spheres and the screening-spheres (a) are charge-spheres.

Inspired by Ref. [21], practitioners of multiple-scattering theory – who tra-
ditionally take the Kohn-Rostoker [41] Green-function point of view – found
another useful way of determining the background phase shifts, namely in terms
of repulsive potentials [58].

For a given active channel (RL = A), the radial positions, r = aA (ε) , of
the nodes of the background functions jα given by (31) are the solutions of the
equation:

0 = jαA (ε, aA (ε)) = jl (κaA (ε)) − nl (κaA (ε)) tanαA (ε) .

Whereas attractive potentials usually do not give positive radii – for an example,
see the dotted curve in Fig. 2 – repulsive potentials do, as may be seen from the
radial Schrödinger equation (2). For a hard repulsive potential, the position of the
node is independent of energy and of l. What we shall use for the active channels
are therefore screening-sphere radii, aA, which are independent of energy and
which usually depend little on L among the active channels. In terms of such a
screening radius, the corresponding background phase shift is given by:

tanαA (ε) = jl (κaA) /nl (κaA) . (43)

Now, instead of having screened spherical waves (35) and MTOs (36) whose
active channels are irregular at the origin – the irregularities of the inactive chan-
nels were already gotten rid of by downfolding, followed by ϕ◦

I (ε, r) → ϕI (ε, r)
substitutions – we prefer that the active channels have merely kinks. This is
achieved by truncating all active jα-functions inside their screening spheres,
that is, we perform the substitution:

jαA (ε, r) →
{
0 for r < aA
jl (κr) − nl (κr) jl (κaA) /nl (κaA) for r ≥ aA

, (44)
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which is continuous but not differentiable, for the screened spherical waves and
for its own jα-function of the MTO – that is the second term on the last two lines
of (37). With that substitution, a screened spherical wave, ψα

RL (ε, rR) , vanishes
inside all screening spheres of the active channels – except inside its own, where
it equals nl (κrR)YL (r̂R) . This may be seen from (40) and the two first lines of
(37). Finally, if we renormalize according to:

ψa
RL (ε, rR) ≡ ψα

RL (ε, rR) /nl (κaRL) (45)

– note the difference between the superscripts a and α – we finally arrive at the
screened (unitary) spherical wave as defined in Refs. [19,20].

ψa
RL (ε, rR) is that solution of the wave equation which is YL (r̂R) on its own

screening sphere, has vanishing YL′ (r̂R′)-average on the screening spheres of the
other active channels, and joins smoothly onto the regular solutions of the radial
Schrödinger equations of the inactive channels. In those, the regular Schrödinger
solutions are, in fact, substituted for the wave-equation solutions.

It is now obvious, that overlap of screening spheres will cause complicated,
and hence long-ranged spatial behavior of the screened spherical waves, and the
worse, the more spherical harmonics are active.

With the normalization (45), there is apparently no need for functions, like
spherical Bessel and Neumann or Hankel functions, which have a branch-cut at
zero energy, and this was the point of view taken in the first accounts [19,20] of
the 3rd-generation method. However, the normalization (45) is not appropriate
for a=0, and expressing the screened structure matrix in terms of the bare one
(24) – which is the only one computable in terms of elementary functions – was
slightly painful in Ref. [19]; moreover, in that paper downfolding was not presen-
ted in its full generality. In these respects, the present, conventional derivation
is simpler, but it takes more equations.

With the α → a redefinitions (44)-(45), the MTO remains as defined by
(36), but with the screened spherical waves and its own jα-function truncated
as described above. We may also renormalize the MTO like in (45):

φaRL (ε, rR) ≡ φαRL (ε, rR) /nl (κaRL) , (46)

whereby these energy-dependent 0th-order MTOs become identical with the kin-
ked partial waves of Refs. [19,20]. This normalization corresponds to:

ϕ◦ a
Rl (ε, aRL) ≡ 1. (47)

Note that this will cause the normalization of the radial Schrödinger-equation
solution, ϕa (ε, r) , to depend on m in case the corresponding screening radius is
chosen to do so.

In Fig. 3 we show the screened counterpart of the bare Si p orbital in Fig.
2. Since only the two first terms of (36) – but not the screened spherical wave
– has pure angular momentum, we cannot plot just the radial wave function
like in Fig. 2. Rather, we show the MTO together with its three parts along the
[111]-line between the central atom and one of its four nearest neighbors in the
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diamond structure. The positions of the central and the nearest-neighbor atoms
are indicated on the axis (Si), and so is the intersection with the central MT-
sphere (s). The p orbital chosen is the one pointing along this [111] direction.
The Si spd channels were taken as active, and to have one and the same screening
radius, a = 0.75t, where t is half the nearest-neighbor distance, i.e., the touching-
sphere radius. The places where the central and the nearest-neighbor screening
spheres intersect the [111]-line are indicated by ’← a’ and ’a →’ with the arrow
pointing towards the respective center. We see that the central MT-sphere is so
large, that it overlaps the screening sphere of the neighboring atom. Like in Fig.
2, the full curve shows the MTO (φa), and the dot-dashed (ϕaY ), the dotted
(ϕ◦ aY ), and the dashed (ψa) curves show the three terms in the renormalized
version of equation (36). The dot-dashed and the dotted curves are identical with
those in Fig. 2, except for the normalization; they are the outwards-integrated
solution (ϕaY ) of the radial Schrödinger equation, continued by the inwards-
integrated solution (ϕ◦ aY ) for the flat potential. These two curves have been
deleted outside the central MT-sphere where their contribution to the MTO
(36) cancels. The inwards integration ends at the screening sphere, inside which
ϕ◦ a – with ja truncated – cancels its own-part, nl (κr) /nl (κa) , of the screened
spherical wave, ψ, shown by the dashed curve (see Eqs. (37) and (44)). Neither
of these cancelling parts are shown in the figure, and the dashed curve inside the
central screening sphere therefore merely shows the contribution to the screened
spherical wave from the inactive channels (l ≥ 3). Due to the ja-truncations,
the screened spherical wave has kinks at all screening spheres and, inside these
spheres, only the contribution from the inactive partial waves – which are regular
solutions of the radial Schrödinger equations – remain. The full curve is the
MTO, which is identical with the screened spherical wave outside its own MT-
sphere. At its own screening sphere, its kink differs from that of the screened
spherical wave due to the truncation of the ja-contribution to ϕ◦ a. Compared
with the bare MTO in Fig. 2, the screened MTO in Fig. 3 is considerably more
localized, even though a negative energy was chosen.

If one demands that the valence band – as well as the lower part of the
conduction band – of Si be described from first principles using merely the
minimal 4 orbitals per atom, one cannot use a set with p orbitals such as those
shown in Figs. 2 and 3; the d-MTOs must be folded into the envelopes of the
remaining sp set by use of the appropriate structure matrix obtained from Eq.
(33) with the choice (34) for the Si d-channels. The corresponding Si p111-MTO
is shown in Fig. 4. Little is changed inside the central screening sphere, but the
tail extending into the nearest-neighbor atom has attained a lot of d-character
around that site, and the MTO is correspondingly more delocalized.

The Si p111-MTO for use in an sp MTO basis constructed from the con-
ventional Si+E potential – for which the diamond structure is packed bcc with
equally large space-filling spheres – is obtained by down-folding of the Si d and
all empty-sphere channels. It turns out to be so similar to the one obtained from
the fat Si-centered potential shown in Fig. 4, that we will not take the space to
show it.
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Whereas the bare MTO in Fig. 2 is what has always been called a bare
MTO, the screened ones in Figs. 3 and 4 look more like a partial wave, ϕY, with
a tail attached at its own screening sphere – and with kinks at all screening
spheres. Hence the name ’kinked partial wave’ given in Ref. [19]. In this original
derivation, kinked partial waves with a = s ≤ t were considered first, and only
later, the limiting case a → 0 gave rise to a painful exercise. The kinked partial
waves have in common with Slater’s original Augmented Plane Waves (APWs)
[59], that they are partial waves, ϕ (ε, r)Y, of the proper energy inside non-
overlapping spheres, which are joined continuously – but with kinks – to wave-
equation solutions in the interstitial. In that region, the APW is a wave-equation
solution with a given wave-vector, whereas the MTO is a solution with the
same energy. Moreover, whereas the APW method uses identical potential and
augmentation spheres, this is not the case for MTOs.

If – for the third time in this section – we make a linear combination of MTOs
– this time defined with kinks – and demand that it solves Schrödinger’s equation,
then the condition is, that the kinks – rather than the jα-functions – from the
tails should cancel the ones in the head. This condition is of course equivalent
with the one for jα-cancellation. Nevertheless, let us express the KKR equations
in this language because it will turn out to have three further advantages: The
artificial dependence on κ ≡

√
ε and the associated change between Neumann

and decaying Hankel functions will disappear, there will be a simple expression
for the integral of the product of two MTOs, and we will be led to a contracted
Green function of great use in the following section.

Since the kinks arise because the jα-functions are truncated inside their
screening spheres, the kink in a certain active channel of an MTO is propor-
tional to the slope of the corresponding jα-function at a+. An expression for
this slope is most easily found from the Wronskian, which in general is defined
as: r2 [f (r) g′ (r) − g (r) f ′ (r)] ≡ {f, g}r , and is independent of r when the two
functions considered are solutions of the same linear, second-order differential

Fig. 4. Si p111 member of a screened minimal sp-set of 0th-order MTOs (see text).
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equation. As a consequence, {n, jα} = {n, j − n tanα} = {n, j} = −κ−1, and
therefore:

∂jα (ε, r) /∂r|a+
= −

[
a2κn (κa)

]−1
. (48)

We now define the elements Ka
R′L′,RL (ε) – where R′L′ and RL both refer to

active channels – of a kink matrix [19,20] as a2
R′L′ times the kink in the R′L′-

channel of φaRL (ε, rR) . From the expression for ∂jα /∂r|a+
, the last forms of the

spherical-harmonics expansions (37) and (40), the definition (41) of the screened
KKR matrix, and the renormalization (46), this is seen to be:

Ka
R′L′,RL (ε) =

−Kα
R′L′,RL (ε)

κnl′ (κaR′L′) κnl (κaRL)
. (49)

Note that this is the kink matrix as defined in Ref. [20], whereas the one defined
in Ref. [19] has the opposite sign. As presently defined, the energy derivative of
the kink matrix is positive definite, as we shall se in the next section.

Screening and the definition (49) have removed the spurious energy depen-
dencies of Kα=0 (ε). To see this more clearly, let us use the first – rather than the
last – forms of the spherical-harmonics expansions (37) and (40), which are also
more closely related to the definition (36) of the MTO, and to Figs. 3 and 4: The
kink matrix for ψa

A (ε, rR) is − [κnl′ (κaA′)]−1
Bα
A′A (ε) [κnl (κaA)]

−1. Moreover,
ψa
A (ε, rR) contains the diverging term n (κr) /n (κa) in its own channel, which

in the MTO is being cancelled by a term from ϕ◦ a (see the third equation (37)
and (38)). The kink matrix for the MTO set is now seen to equal the one for
the set of screened spherical waves, plus – in the diagonal – the kink in the
function ϕa −ϕ◦ a + n (κr) /n (κa) . Since ϕ−ϕ◦ is smooth, this kink is the one
between the radial functions ϕ◦ a (ε, r) and n (κr) /n (κa) . We thus arrive at the
expression:

Ka
R′L′,RL (ε) = −

Bα
R′L′,RL (ε)

κnl′ (κaR′L′) κnl (κaRL)
(50)

+aRL [∂ {nl (ε, a)} − ∂ {ϕ◦
l (ε, a)}] δR′RδL′L

= a2
R′L′

∂

∂r
PR′L′ψa

RL (ε, rR)
∣∣∣∣
a

− aA∂ {ϕ◦
l (ε, a)} δR′RδL′L

≡ Ba
R′L′,RL (ε) − aRL ∂ {ϕ◦

l (ε, a)} δR′RδL′L, (51)

in terms of the logarithmic-derivative function at the screening sphere of the
inwards-integrated radial function, ∂ {ϕ◦

l (ε, a)} ≡ ∂ ln |ϕ◦
l (ε, r)| /∂ ln r|a. Re-

member that RL and R′L′ refer to active channels.
In the third line of (50) we have pointed to the fact that the first, potential-

independent part of the kink matrix is a2
A′ times the outwards slope of the scre-

ened spherical wave and in (51) we have denoted this slope matrix Ba
R′L′,RL (ε) .

Note that, as presently defined, this slope matrix is Hermitian and equals aR′L′

times the non-Hermitian slope matrix defined in Refs. [19,20]; moreover, the
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transformation from Bα to Ba is not quite (49), but differs from it by the term
a∂ ln |nl (κr)| /∂ ln r|a. We may switch from Neumann to Bessel functions, using
again that jl (κa) = nl (κa) tanα, and that {j, n} = 1/κ. We get:

Ba (ε) = − tanα (ε)
κj (κa)

[Bα (ε) − κ cotα (ε)]
tanα (ε)
κj (κa)

+ a∂ {j (κa)}

=
1

j (κa)
[B (ε) + κ cotα (ε)]−1 1

j (κa)
+ a∂ {j (κa)} , (52)

where the last equation has been obtained with the help of (33), and where
B (ε) ≡ Bα=0 (ε) is the bare KKR structure matrix (24). The matrix B (ε) +
κ cotα (ε) is the bare KKR matrix for the background-potential and has dimen-
sion (A+ I)2 ; it only truncates when αI (ε) ≡ ηI (ε) = 0, as it happens for high
l.

Computational Procedure. The recipe for a computation could be: Solve
the radial Schrödinger equations outwards, and then inwards to a ∼ 0.8t, for
all channels up l � 3. Then, compute the Green matrix of the background,
Gα=0 (ε) ≡

[
Bα=0 (ε) + κ cotα (ε)

]−1
, by inversion in real space, choosing the

strong screening just mentioned, i.e. nearly touching screening spheres for all
spd (f) channels. This gives the strongly screened structure matrix, Bα (ε) or
Ba (ε) , according to (52), and the KKR matrix, Kα (ε) or Ka (ε) , for the real
potential in the strongly screened representation according to (41) or (51). For
a crystal, Bloch-sum the KKR matrix. Now, invert this matrix in real space to
obtain the Green matrix, Gα (ε) ≡ Kα (ε)−1 or Ga (ε) ≡ Ka (ε)−1

. Next, choose
the physically and chemically motivated screening (β) and rescreen the Green
matrix to the downfolded representation, Gβ (ε) or Gb (ε) , using the scaling
relations (53) or (55) derived below. As will be explained in the following Sect.
3, this should be done for a number of energies. In addition, one will need the first
energy derivatives Ġb (ε) . The latter may be obtained from K̇a (ε) via numerical
differentiation of the weakly energy dependent structure matrix, Ba (ε) , and
calculation of

∫ s
0 ϕa (ε, r)2 r2dr −

∫ s
a
ϕ◦ a
RL (ε, r)2 r2dr for the energy derivative of

the logarithmic derivative function in (51), as will be shown in (61)-(63) below.
With this K̇a (ε) , compute Ġa (ε) from (63) and, finally, rescreen to Ġb (ε) using
the energy derivative of (55) given below.

In order to evaluate the wave function (42), one needs in addition to Bb
A′A (ε) ,

the block Bb
IA (ε) , and this may be obtained from (52).

The relation of the screening constants, the structure matrix, and the KKR
matrix to those – see (10) and (11) – of the conventional ASA is simple, but not
as straightforward as the α-to-a transformations of the present section, so for
this topic we refer to Refs. [19,20].

This completes our exact transformation of the original KKR matrix (26)
which has long range and strong energy dependence [B0 (ε,k) has poles at the
free-electron parabola:

∑
G |k + G|2 =ε ] to a screened and renormalized KKR
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matrix which – depending on the screening – may be short ranged and weakly
energy dependent. The kink matrix is expressed in terms of a slope matrix,
which only depends on the energy and the structure of the background, and the
logarithmic derivatives of the active radial functions extrapolated inwards to the
appropriate screening radius.

2.4 Re-screening the Green Matrix

In the ASA, it is simpler to re-screen the Green matrix (15) than the structure
matrix (10), because the former involves additions to the diagonal and energy-
dependent rescaling of rows and columns, but no matrix inversions. The same
holds for the fully energy-dependent matrices of the 3rd-generation, as may be
seen from (33) or (52) for the structure matrix. For the Green matrix (41), we
get with the help of (52) and a bit of algebra:

Gα (ε) ≡ Kα (ε)−1 = κ−1 tanα (ε) [1 − tanα (ε) cot η (ε)]
+ [1 − tanα (ε) cot η (ε)]Gα=0 (ε) [1 − tanα (ε) cot η (ε)] ,

which has the form (15). Solving for Gα=0 (ε) and setting the result equal to
Gβ (ε) yields the following relation for re-screening of the Green matrix:

Gβ (ε) =
tan ηβ (ε)
tan ηα (ε)

Gα (ε)
tan ηβ (ε)
tan ηα (ε)

− tanα (ε) − tanβ (ε)
κ

tan ηβ (ε)
tan ηα (ε)

. (53)

In a-language, where according to (49): Ga (ε) = −κn (κa)Gα (ε)κn (κa) , the
diagonal matrices in (53) become [n (κb) /n (κa)]

[
tan ηβ (ε) / tan ηα (ε)

]
and

κn (κa)n (κb) [tanα (ε) − tanβ (ε)] and may, in fact, be expressed more simply
in terms of the inwards-integrated radial wave function, renormalized according
to (47). In order to see this, we first use the form (39):

ϕ◦ a (ε, r) =
n (κr) tan ηα (ε) − jα (ε, r)

n (κa) tan ηα (ε)
,

and then evaluate this at the screening-radius b :

ϕ◦ a (ε, b) =
n (κb) tan ηα (ε) − jα (ε, b)

n (κa) tan ηα (ε)
=

n (κb) tan ηβ (ε)
n (κa) tan ηα (ε)

.

To obtain this result, we have also used:

jα (ε, b) = j (κb) − n (κb) tanα (ε) = n (κb) [tanβ (ε) − tanα (ε)] ,

from (31) and (43). The second, readily computable function is that solution of
the radial wave equation which vanishes at a with slope 1/a2 :

ja (ε, r) ≡ jα (ε, r)
a2∂jα (ε, r) /∂r|a

= −κn (κa) jα (ε, r) . (54)
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Evaluation at r = b yields:

ja (ε, b) = −κn (κa) jα (ε, b) = κn (κa)n (κb) [tanα (ε) − tanβ (ε)] ,

which is the second function needed. Hence, we have found the following simple
and practical scaling relation for re-screening of the Green matrix:

Gb (ε) = ϕ◦ a (ε, b) Ga (ε) ϕ◦ a (ε, b) + ja (ε, b) ϕ◦ a (ε, b) . (55)

2.5 Green Functions, Matrix Elements, and Charge Density

The kinked partial wave is the solution of the inhomogeneous Schrödinger equa-
tion:

(H − ε)φaR′L′ (ε, r) = −
∑
RL

δ (rR − aRL)YL (r̂R)Ka
RL,R′L′ (ε) , (56)

provided that we define the MTO (36) the 3-fold way indicated in Figs. 2 –
4, and therefore – for the MT-Hamiltonian H (4) – use the radial Schrödinger
equation (2) channel-wise.

The kinks of the MTO are given correctly by (56), but the proper MTO
does not solve Schrödinger’s differential equation in the shells between the scre-
ening and the MT-spheres; here we need the 3-fold way. This way must not be
an approximation: For instance, when applied to those linear combinations of
MTOs which solve the KKR equations – and hence Schrödinger’s equation –
equation (56) is correct (and yields zero), because for each active channel, A′,
the two solutions, PA′

∑
A ψa

A (ε, rR) caA and ϕ◦ a
A′ (ε, rR′) caA′ , of the radial wave

equation match in value and slope at aR′L′ , and therefore cancel throughout
the shell sR′ − aR′L′ . Expressed in another way: For energy-dependent MTOs,
kink-cancellation leads to cancellation of the triple-valuedness. For the energy-
independent NMTOs to be derived in the next section, special considerations
will be necessary.

Solving (56) for δ (rR − aRL)YL (r̂R) , leads to:

(H − ε)
∑
R′L′

φaR′L′ (ε, r)Ga
R′L′,RL (ε) = −δ (rR − aRL)YL (r̂R) (57)

which shows that the linear combinations

γaRL (ε, r) =
∑
R′L′

φaR′L′ (ε, r)Ga
R′L′,RL (ε) , (58)

of MTOs – all with the same energy and screening – is a contraction of r′ onto
the screening spheres (r′ → aRL, RL) of the Green function defined by:

(Hr − ε)G (ε; r, r′) = −δ (r − r′) .
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The contracted Green function γaRL (ε, r) has kink 1 in its own channel and kink
0 in all other active channels (�= RL) . This function is therefore a solution of
the Schrödinger equation (defined the 3-fold way) which is smooth everywhere
except at its own screening sphere. γaRL (ε, r) is usually delocalized, and when
the energy, ε, coincides with a pole, εj , of the Green matrix, γaRL (ε, r) diverges
everywhere in space. This means, that when ε = εj , then the renormalized
function is smooth also at its own sphere, and it therefore solves Schrödinger’s
equation. In vector-matrix notation, equations (56) and (57) become:

(H − ε)φa (ε, r) = −δa (r)Ka (ε) ,
(H − ε)φa (ε, r)Ga (ε) ≡ (H − ε) γa (ε, r) = −δa (r) ,

where we have defined a set of spherical harmonics on the a-shells with the
following members:

δaRL (rR) ≡ δ (rR − aRL)YL (r̂R) . (59)

If expressed in real space, our Green matrix, Ga (ε) , is what in multiple-
scattering theory [11] is usually called the scattering path operator and denoted
τ (ε). In the 2nd-generation LMTO formalism, it was denoted g (ε) , but in the
present paper we denote matrices by capitals.

Since in the 3-fold way, an MTO takes the value one at its own screening
sphere and zero at all other screening spheres, expression (56) yields for the
matrix element of H − ε with another, or the same, MTO in the set:

〈φaR′L′ (ε) |H − ε|φaRL (ε)〉 = −Ka
R′L′,RL (ε) ≡ −Ga

R′L′,RL (ε)−1
, (60)

which says that the negative of the kink matrix is the Hamiltonian matrix, minus
the energy, in the basis of energy-dependent 0th-order MTOs.

For the overlap integral between screened spherical waves, with possibly dif-
ferent energies and in the interstitial between the screening spheres, defined
channel-by-channel, we obtain the simple expression [19]:

〈ψa
R′L′ (ε′) | ψa

RL (ε)〉 =
Ba
R′L′,RL (ε′) − Ba

R′L′,RL (ε)
ε′ − ε

(61)

−→ Ḃa
R′L′,RL (ε) if ε′ → ε

by use of Green’s second theorem, together with expression (51) for the surface
integrals. Note that, neither active channels different from the eigen-channels,
R′L′ and RL, nor the inactive channels contribute to the surface integrals. The
reasons are that ψa

R′L′ (ε′, r) and ψa
RL (ε, r) vanish on all ’other’ screening sphe-

res, and that they are regular in the inactive channels. The latter means that,
in the inactive channels, the ’screening-sphere interstitial’ extends all the way
to the sites (aI → 0). For the overlap integral between kinked partial waves, the
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3-fold way yields:

〈φaR′L′ (ε′) | φaRL (ε)〉 ≡ 〈ψa
R′L′ (ε′) | ψa

RL (ε)〉 + δR′RδL′L ×(∫ sR

0
ϕaRL (ε′, r)ϕaRL (ε, r) r2dr −

∫ sR

aRL

ϕ◦ a
RL (ε′, r)ϕ◦ a

RL (ε, r) r2dr

)

=
Ka
R′L′,RL (ε′) − Ka

R′L′,RL (ε)
ε′ − ε

−→ K̇a
R′L′,RL (ε) if ε′ → ε. (62)

For the overlap matrix for the set of contracted Green functions, this gives:

〈γa (ε′) | γa (ε)〉 = −Ga (ε′) − Ga (ε)
ε′ − ε

(63)

→ −Ġa (ε) = Ga (ε) K̇a (ε)Ga (ε) if ε′ → ε.

We see that Ḃa (ε) , K̇a (ε) , and Ġa (ε) are Hermitian, just like Ba (ε) , Ka (ε) ,
and Ga (ε). Whereas Ḃa (ε) and K̇a (ε) are positive definite matrices, that is,
their eigenvalues are positive or zero, Ġa (ε) is negative definite. For well-screened
MTOs, the logarithmic derivative functions in the diagonal of the kink matrix
(51) depend more strongly on energy than the slope matrix. The way to com-
pute the energy derivative K̇a (ε) is therefore to compute Ḃa (ε) by numerical
differentiation, and the remaining terms by integration as in (62).

In the following we shall stay with the normalization (45)-(47) denoted by
Latin – rather than Greek – superscripts and shall rarely change the screening.
We therefore usually drop the superscript a altogether. Some well-screened re-
presentation is usually what we have in mind, but also heavily down-folded –
and therefore long-ranged – representations will be considered. In those cases,
some parts of the computation must of course be performed in the Bloch – or
k-space – representation.

The wave function is Ψi (r) = φ (εi, r) ci , where the eigen(column)vector
ci solves the KKR equations, K (εi) ci = 0, and is normalized according to:
1 = c†

i K̇ (εi) ci, in order that 〈Ψi | Ψi〉 = 1. From the definition (36) of the MTO,
we see that an accurate approximation for the charge density, which is consistent
with the 3-fold way and, hence, with the normalization, has the simple form:

ρ (r) = ρψ (r) +
∑
R

[
ρϕR (rR) − ρϕ

◦
R (rR)

]
(64)

where the global contribution is:

ρψ (r) ≡
∑
RR′

∑
LL′

∫ εF

ψRL (ε, rR) ΓRL,R′L′ (ε) ψR′L′ (ε, rR′)∗ dε (65)
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and the local contributions, ρϕR (rR) − ρϕ
◦

R (rR) , which vanish smoothly at their
respective MT-sphere, are given by:

ρϕR (r) =
∑
LL′

YL (r̂)Y ∗
L′ (r̂)

∫ εF

ϕRl (ε, r) ΓRL,RL′ (ε) ϕRl′ (ε, r) dε

ρϕ
◦

R (r) =
∑
LL′

YL (r̂)Y ∗
L′ (r̂)

∫ εF

ϕ◦
Rl (ε, r) ΓRL,RL′ (ε) ϕ◦

Rl′ (ε, r) dε . (66)

The common density-of-states matrix in these equations is:

ΓRL,R′L′ (ε) =
occ∑
i

cRL,iδ (ε − εi) c∗
R′L′,i =

1
π
ImGRL,R′L′ (ε+ iδ) . (67)

The approximations inherent in (64) are that all cross-terms between products
of ψ-, ϕ-, and ϕ◦-functions, and between ϕ- or ϕ◦-functions on different sites are
neglected.

3 Polynomial MTO Approximations

In this section we shall show how energy-independent basis sets may be derived
from the kinked partial waves, that is, how we get rid of the energy dependence
of the MTOs. Specifically, we shall preview the generalization [51,24] of the
3rd-generation LMTO method [19,20] mentioned in connection with Fig. 1. This
generalization is to an ’N’MTO method in which the basis set consists of energy-
independent NMTOs,

χ
(N)
RL (r) =

N∑
n=0

∑
R′L′

φR′L′ (εn, r) L
(N)
R′L′,RL;n , (68)

where
N∑
n=0

L
(N)
R′L′,RL;n = δR′RδL′L,

constructed as linear combinations of the kinked partial waves at a mesh of
N + 1 energies, in such a way that the NMTO basis can describe the solutions,
Ψi (r) , of Schrödinger’s equation correctly to within an error proportional to
(εi − ε0) (εi − ε1) ... (εi − εN ) . Note the difference between one-electron energies
denoted εi and εj , and mesh points denoted εn and εm, with n and m taking
integer values. The set, χ(N=0) (r) , is therefore simply φ (ε0, r) , and this is the
reason why, right at the beginning of the previous section, φ (ε, r) was named the
set of 0th-order energy-dependent MTOs. For N > 0, the NMTOs are smooth
and their triple-valuedness decreases with increasing N. For the mesh condensing
to one energy, εν , the NMTO basis is of course constructed as linear combinations
of φ (εν , r) and its first N energy derivatives at εν . For N=1, this is the well-
known LMTO set.
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The immediate practical use of this new development is to widen and sharpen
the energy window inside which the method gives good wave functions, without
increasing the size of the basis set. One may even decrease the size of the basis
through downfolding, and still maintain an acceptable energy window by increa-
sing the order of the basis set. The prize for increasing N is: More computation
and increased range of the basis functions.

3.1 Energy-Independent NMTOs

What we have done in the previous sections – one might say – is to factorize
out of the contracted Green function, γ (ε, r) , some spatial functions, φRL (ε, r) ,
which are so localized that, for two energies inside the energy-window of interest,
the corresponding functions, φRL (ε, r) and φRL (ε′, r) , cannot be orthogonal. In
other words: The kinked partial waves are so well separated through localization
and angular symmetry that we need only one radial quantum number for each
function.

Now, we want to get rid of the kinks and to reduce the triple-valuedness and
the energy dependence of each kinked partial wave – retaining its RL-character
– to a point where the triple-valuedness and the energy-dependence may both
be neglected. This we do, first by passing from the set φ (ε, r) to a set of so-
called Nth-order energy-dependent MTOs, χ(N) (ε, r) , whose contracted Green
function,

χ(N) (ε, r)G (ε) ≡ φ (ε, r)G (ε) −
N∑
n=0

φ (εn, r)G (εn)A(N)
n (ε) , (69)

differs from φ (ε, r)G (ε) by a function which remains in the Hilbert space span-
ned by the set φ (ε, r) with energies inside the window of interest, and which
is analytical in energy. The two contracted Green functions thus have the same
poles, and both energy-dependent basis sets, φ (ε, r) and χ(N) (ε, r) , can there-
fore yield the exact Schrödinger-equation solutions. The analytical functions of
energy we wish to determine in such a way that χ(N) (ε, r) takes the same value,
χ(N) (r) , at the N + 1 points, ε0, ..., εN . With the set χ(N) (ε, r) defined that
way, we can finally neglect its energy dependence, and the resulting χ(N) (r) is
then the set of Nth-order energy-independent MTOs.

Other choices for the analytical functions of energy, involving for instance
complex energies or Chebyshev polynomials, await their exploration.

One solution with the property that χ(N)
RL (ε, r) takes the same value for ε at

any of the N + 1 mesh points, is of course given by the polynomial:

A
(N)
n;R′L′,RL (ε) = δR′RδL′L

N∏
m=0, �=n

ε − εm
εn − εm

,

of Nth degree. But this solution is useless, because it yields: χ(N) (r) = 0. If,
instead, we try a polynomial of (N −1)st degree for the analytical function, then
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we can write down the corresponding expression for the set χ(N) (r) without
explicitly solving for the (N + 1)2 matrices A(N)

n (εm) , and then prove afterwards
that each basis function has its triple-valuedness reduced consistently with the
remaining error ∝ (εi − ε0) (εi − ε1) ... (εi − εN ) of the set.

Since we want χ(N) (εn, r) to be independent of n for 0 ≤ n ≤ N, all its
divided differences on the mesh – up to and including the divided difference
of order N – vanish, with the exception of the 0th divided difference, which is
χ(N) (r). As a consequence, the Nth divided difference of χ(N) (ε, r)G (ε) on the
left-hand side of (69) is χ(N) (r) times the Nth divided difference of the Green
matrix. Now, the Nth divided difference of the last term on the right-hand side
vanishes, because it is a polynomial of order N − 1, and as a consequence,

χ(N) (r) =
∆Nφ (r)G
∆ [0...N ]

(
∆NG

∆ [0...N ]

)−1

. (70)

This basically solves the problem of finding the energy-independent NMTOs!
What remains, is to factorize the divided difference of the product φ (ε, r)G (ε)
into spatial functions, φ (εn, r) , which are vectors in RL, and matrices, G (εn) ,
with n = 0, ..., N. Equivalently, we could use a binomial divided-difference series
in terms of φ (ε0, r) and its first N divided differences on the mesh together with
G (εN ) and its corresponding divided differences.

For a condensed energy mesh, defined by: εn → εν for 0 ≤ n ≤ N, the Nth
divided difference becomes 1

N ! times the Nth derivative:

∆Nf

∆ [0...N ]
≡ f [0...N ] → 1

N !
dNf (ε)
dεN

∣∣∣∣
εν

, (71)

but since a discrete mesh with arbitrarily spaced points is much more powerful
in the present case where the time-consuming part of the computation is the
evaluation of the Green matrix (and its first energy derivative for use in Eq.
(63)) at the energy points, we shall proceed using the language appropriate for
a discrete mesh. In (71) we have introduced the form f [0...N ] because it may –
more easily than ∆Nf/∆ [0...N ] – be modified to include another kind of divided
differences, the so-called Hermite divided differences, which we shall meet later.

Readers interested in the details of the discrete formalism are referred to the
Appendix where we review relevant parts of the classical theory of polynomial
approximation, and derive formulae indispensable for the NMTO formalism for
discrete meshes. Readers merely interested in an overview, may be satisfied with
the formalism as applied to a condensed mesh and for this, they merely need
the translation (71) together with the divided-difference form of the NMTO to
be described in the following. Details about the Lagrange form may be ignored.

Lagrange form. We first use the Lagrange form (149) of the divided difference
to factorize the energy-independent NMTO (70) and obtain:

χ(N) (r) =
N∑
n=0

φn (r) Gn∏N
m=0, �=n (εn − εm)

G [0..N ]−1
, (72)
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Fig. 5. Si p111 member of the spd-set of 0th (dottet) and 1th-order MTOs (see text
and Eq.(74)).

Here and in the following, φn (r) ≡ φ (εn, r) and Gn ≡ G (εn) . Eq. (72) has the
form (68) and we see, that the weight with which the MTO set at εn enters the
NMTO set, is:

L(N)
n =

Gn∏N
m=0, �=n (εn − εm)

G [0..N ]−1
. (73)

By application of (149) to the Green matrix, we may verify that these Lagrange
weights sum up to the unit matrix. For this reason, the RL characters of the
NMTO basis functions will correspond to those of the kinked partial waves.

As an example, for N=1 we get the so-called chord-LMTO:

χ(1) (r) = φ0 (r)G0 (G0 − G1)
−1 + φ1 (r)G1 (G1 − G0)

−1

= φ0 (r) (K1 − K0)
−1

K1 + φ1 (r) (K0 − K1)
−1

K0 (74)

= φ0 (r) − φ ([01] , r)K [01]−1
K0

→ φ (r) − φ̇ (r) K̇−1K.

In this case, there is only one energy difference, ε0 − ε1, so it cancels out. In the
3rd line, we have reordered the terms in such a way that the Newton form, to
be derived for general N in (88) and (90) below, is obtained. In the 4th line,
we have condensed the mesh onto εν , whereby the well-known tangent-LMTO
[19,20] is obtained. The latter is shown by the full curve in Fig.5 for the case of
the Si p111-orbital belonging to an sp set. The dashed curve is the corresponding
kinked partial wave, φ (r) , shown by the full curve in Fig. 4. Compared to the
latter, χ(1) (r) is smooth, but has longer range. The strong contributions to the
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tail of the LMTO from φ̇ (r)’s on the nearest neighbor are evident. It is also clear,
that for computations involving wave functions – e.g. of the charge density – the
building blocks will rarely be the NMTOs, but the kinked partial waves, φn (r) ,
which are more compact.

One might fear that the discrete NMTO scheme would fail when one of the
mesh points is close to a one-electron energy, that is, to a pole of the Green
matrix, but that does not happen: If one of the Gn’s diverges, this just means
that the corresponding Lagrange weight is 1, and the others 0. Hence, in this
case the NMTO is just φn (r) , and this is the correct result. Moreover, the
kink of this single φn (r) does not matter, because in this case where G (ε) is
at a pole, the determinant of its inverse vanishes, so that the kink-cancellation
equations, Kncn = 0, have a non-zero solution, cn, which yields a smooth linear
combination, φn (r) cn, of NMTOs.

Kinks and triple-valuedness. The energy-independent NMTOs have been de-
fined through (69) and (70) in such a way that χ(N) (ε, r)−χ(N) (r) ∝ (ε − ε0) ...
(ε − εN ). We now show, that also the kink-and-triple-valuedness of χ(N) (r) is
of that order, and therefore negligible.

The result of projecting the energy-dependent MTO onto YL′ (r̂R′) for an
active channel was given in (37) for its own channel, and in (40) for any other
active channel. Together, these results may be expressed as:

PR′L′φαRL (ε, rR) = ϕαRl (ε, rR) δR′RδL′L + jαR′L′ (ε, rR′)κ−1 ×[
κ cot ηαRL (ε) δR′RδL′L +Bα

R′L′,RL (ε)
]

or, in terms of the renormalized functions (44), (46), (47), and (54), as well as
the kink matrix defined in (49), as:

PR′L′φaRL (ε, rR) = ϕaRl (ε, rR) δR′RδL′L + jaR′L′ (ε, rR′)Ka
R′L′,RL (ε) .

Here, like in (37) and (40), contributions from MT-overlaps – which are irrele-
vant for the present discussion – have been neglected. Without kinks and triple-
valuedness, PR′L′φaRL (ε, rR) would be given by the first term, and the kinks and
the triple-valuedness are therefore given by the second term:

TR′L′φaRL (ε, rR) = jaR′L′ (ε, rR′)Ka
R′L′,RL (ε) . (75)

This vanishes for those linear combinations of MTOs which solve the kink-
cancellation conditions.

What now happens for the energy-independent approximation, χ(0) (r) ≡
φ0 (r) , to the 0th-order energy-dependent MTO, χ(0) (ε, r) ≡ φ (ε, r) , is that the
former has kinks and triple-valuedness, but both are proportional toK (ε0) which
– according to (56) – is proportional to H−ε0 and, hence, to εi−ε0. The kinks and
triple-valuedness are thus of the same order as the error of χ(0) (r) . Similarly, for
N > 0, the fact that the A

(N)
n (ε)’s are polynomials of (N − 1)st degree, reduces

the triple-valuedness of χ(N) (r) to being proportional to (ε − ε0) ... (ε − εN ) ,
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as we shall now see: Multiplication of (75) with Ga (ε) from the right yields:
T φa (ε, r)Ga (ε) = ja (ε, r) , and for the kinks and the triple-valuedness of the
contracted Green function (69) we therefore get:

T χ(N) (ε, r)G (ε) = ja (ε, r) −
N∑
n=0

ja (εn, r)A(N)
n (ε) .

Taking again the Nth divided difference for the mesh on which χ(N) (ε, r) is
constant yields:

T χ(N) (r) = ja ([0...N ] , r)Ga [0...N ]−1 (76)

= −ja ([0...N ] , r)
(
E(0) − ε0

)(
E(1) − ε1

)
...

(
E(N) − εN

)
,

for the kinks and the triple-valuedness of the energy-independent NMTO. In
the last line, we have used an expression – which will be proved in (83) – for
the inverse of the Nth divided difference of the Green matrix in terms of the
product of energy matrices to be defined in (81). At present, it suffices to note
that differentiation of the Green function,

Ǧ (ε) ≡
∑
j

1
ε − εj

, (77)

for a model with one, normalized orbital yields:[
1
N !

dN Ǧ (ε)
dεN

∣∣∣∣
εν

]−1

= −

∑
j

1

(εj − εν)
N+1

−1

≈ − (εi − εν)
N+1

,

where the last approximation holds when the mesh is closer to the one-electron
energy of interest, εi, than to any other one-electron energy, εj �= εi. Note that j
– and not n – denotes the radial quantum number. Similarly, this model Green
function has a divided difference on a discrete mesh of N+1 points, whose inverse
is:

Ǧ [0..N ]−1 = −

∑
j

1∏N
n=0 (εj − εn)

−1

≈ −
N∏
n=0

(εi − εn) , (78)

as proved in Eq. (159) of the Appendix. We have thus seen that the triple-
valuedness is of the same order as the error present in χ(N) (r) due to the neglect
of the energy-dependence of χ(N) (ε, r) .

The radial function ja (ε, r) in (75) vanishes for r ≤ a, where it has a kink of
value 1/a2, and it solves the radial wave equation for r ≥ a. As shown in [51],
its expansion in powers of r − a ≥ 0 is:

rja (ε, r) =
r − a

a
+

1
3!

[
l (l + 1) − εa2](r − a

a

)3

− l (l + 1)
3!

(
r − a

a

)4

+
1
5!

[
18l (l + 1) +

(
l (l + 1) − εa2)2

](
r − a

a

)5

+ ... .
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This means the Nth divided-difference function entering (76) satisfies:

ja ([0...N ] , r) ∝ (r − a)2N+1
.

The kink and triple-valuedness (76) in the s − a shell of χ(N) (r) is thus pro-
portional to (r − a)2N+1 ∏N

n=0 (εi − εn) , and for this reason the energy-window
widens as s − a decreases, that is, as the screening increases.

Transfer matrices and correspondence with Lagrange interpolation.
We need to work out the effect of the Hamiltonian on the NMTO set. Since the
NMTOs with N > 0 are smooth, the contributions from the delta-function on
the right-hand side of (57) for the contracted Green function will cancel in the
end. Operation on (69) therefore yields:

H
[
φ (ε, r) − χ(N) (ε, r)

]
G (ε) = φ (ε, r) εG (ε) − Hχ(N) (ε, r)G (ε)

=
∑N

n=0
φn (r) εnGnA

(N)
n (ε)

and by taking the Nth divided difference for the mesh on which χ(N) (ε, r) is
constant, we obtain:

Hγ ([0...N ] , r) = Hχ(N) (r)G [0...N ] = (φεG) ([0...N ] , r)
= γ ([0..N − 1] , r) + εN γ ([0...N ] , r) , (79)

using (151) with the choice of the last point on the mesh. Solving for the NMTOs
yields:

(H − εN )χ(N) (r) = χ(N−1) (r)
(
E(N) − εN

)
(80)

where χ(N−1) (r) ≡ γ ([0..N − 1] , r) G [0..N − 1]−1 is the energy-independent
MTO of order N − 1, obtained by not using the last point. Moreover,

E(N) ≡ εN + G [0..N − 1]G [0...N ]−1 = (εG) [0...N ] G [0...N ]−1

=
N∑
n=0

εnGn∏
m=0, �=n (εn − εm)

G [0...N ]−1 =
N∑
n=0

εnL
(N)
n , (81)

is the energy matrix which – in contrast to χ(N−1) (r) – is independent of which
point on the mesh is omitted. The first equation (81) shows how to compute
E(N) and the last equation shows that E(N) is the energy weighted on the 0...N -
mesh by the Lagrange matrices (73). For a condensed mesh, the results is the
simple one (19) quoted in the Overview.

We now consider a sequence of energy meshes, starting with the single-
point mesh, ε0, then adding ε1 in order to obtain the two-point mesh ε0, ε1,
then adding ε2 obtaining the three-point mesh ε0, ε1, ε2, a.s.o. Associated with
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these meshes we obtain a sequence of NMTO sets: the kinked-partial wave set,
χ(0) (r) , the LMTO set, χ(1) (r) , the QMTO set, χ(2) (r) , a.s.o. Working down-
wards, we thus always delete the point with the highest index. Equation (80) now
shows that H − εN may be viewed as the step-down operator and E(N) − εN as
the corresponding transfer matrix with respect to the order of the NMTO set.

In this sequence we may include the case N=0, provided that we define:

E(0) − ε0 ≡ −K (ε0) and χ(−1) (r) ≡ δ (r) . (82)

N + 1 successive step-down operations on the NMTO set thus yield:

(H − ε0) ... (H − εN ) χ (N) (r) = δ (r)
(
E(0) − ε0

)
...

(
E(N) − εN

)
which, first of all, tells us that one has to operate N times with ∇2 – that is,
with ∇2N – before getting to the non-smoothness of an NMTO. This is consistent
with the conclusion about kinks and triple-valuedness reached in the preceding
sub-section. Secondly, it tells us that the higher the N , the more spread out the
NMTOs; if we let r (M) denote the range of the E(M)-matrix, then the range of
the NMTO is roughly

∑N
M=0 r (M) .

The product of E(0) − ε0 and all the transfer matrices on the right-hand side
of the above equation is seen from (81) and (82) to be simply: −G [0...N ]−1

.
Hence, we have found the matrix equivalent of the elementary relation (78):

−G [0...N ]−1 =
(
E(0) − ε0

)(
E(1) − ε1

)
...

(
E(N) − εN

)
. (83)

The other way around: Recursive use of (83) with increasing N , will generate the
transfer matrices and will lead to the first equation (81). Note that although the
order of the arguments in the divided difference on the left-hand side is irrelevant,
the order of the factors on the right-hand side is not, since the transfer matrices
do not commute. That G [0...N ] is Hermitian, is not so obvious from (83) either.
Finally, we may note that G [0..n − 1, n+ 1..N ] is not defined by (83) but by
(148):

G [0..n − 1, n+ 1..N ] ≡ G [0...N − 1] + (εN − εn)G [0....N ] .

Relation (83) now gives the following form for the Lagrange weights (73):

L(N)
n =

(
E(n) − εn

)−1
(
E(0) − ε0

)
..
(
E(n) − εn

)
..
(
E(N) − εN

)
(εn − ε0) .. (εn − εn−1) (εn − εn+1) .. (εn − εN )

, (84)

and this is seen to pass over to the classical expression (146) for the Lagrange
coefficients if we substitute all energy matrices by the energy: E(M) → ε. This
correspondence between – on the one side – the set φ (ε, r) and the Lagrange
polynomial approximation (146) to its energy dependence (Fig. 1) and – on the
other side – the set χ(N) (r) expressed by (68) with the matrix form (84), is
conceptually very pleasing. What is not so obvious – but comforting – is that
the Hilbert space spanned by the NMTO set is invariant under energy-dependent
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linear transformations, φ̂ (ε, r) ≡ φ (ε, r)T (ε) , of the kinked partial waves. This
will be shown in a later section.

By taking matrix elements of (80), the transfer matrix may be expressed as:

E(N) − εN =
〈
χ(N) | χ(N−1)

〉−1 〈
χ(N) |H − εN |χ(N)

〉
. (85)

This holds also for N=0, provided that we take the value of χ(0) (r) at its scre-
ening sphere to be ϕ◦ a (ε, a) = 1 – as dictated by the 3-fold way – so that〈
χ(0) | χ(−1)

〉
= 1. The form (85) shows that the transfer matrices with N ≥ 1

are not Hermitian, but short ranged, as one may realize by recursion starting
from N=0. Finally, it should be remembered that the NMTOs considered sofar
have particular normalizations, which are not:

〈
χ(N) | χ(N)

〉
= 1, and so do the

transfer matrices. We shall return to this point.

Newton form. Instead of using the Lagrange form (149) to factorize the NMTO
(70), we may use the divided-difference expression (150). With the substitutions:
f (ε) → G (ε) and g (ε) → φ (ε, r) , we obtain the Newton form for the NMTO
which most clearly exhibits the step-down property (80):

χ(N) (r) =
∑0

M=N
φ ([M..N ] , r)G [0..M ]G [0...N ]−1

= φN (r) + φ ([N − 1, N ] , r)
(
E(N) − εN

)
+ .. (86)

..+ φ ([0...N ] , r)
(
E(1) − ε1

)
..
(
E(N) − εN

)
,

since, from (56) and (79),

(H − εN )φN (r) = −δN,0δ (r)K0,

(H − εN )φ ([M...N ] , r) = φ ([M..N − 1] , r) . (87)

We thus realize that the energy matrices in the Newton series for the NMTO
set are the matrices for stepping down to the sets of lower order. For some
purposes, the ’reversed’ series, obtained from (150) with f (ε) → φ (ε, r)G (ε)
and g (ε) → G (ε):

χ(N) (r) =
∑N

M=0
φ ([0..M ] , r)G [M..N ]G [0...N ]−1

= φ0 (r) + φ ([01] , r)
(
E(N) − ε0

)
+ .. (88)

..+ φ ([0...N ] , r)
(
E(1) − εN−1

)
..
(
E(N) − ε0

)
,

is more convenient. This expression clearly exhibits the correspondence with the
Newton polynomial approximation (147) to the energy dependence of φ (ε, r) .
Conceptually, a divided-difference series is more desirable than the Lagrange
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series, because the Lagrange weights (84) ’fluctuate wildly’ as a function of n,
taken in the order of monotonically increasing energies.

For a condensed mesh, (86) and (88) obviously reduce to one-and-the-same
matrix-equivalent of the Taylor series for φ (ε, r) :

χ(N) (r) → φ (r) + φ̇ (r)
(
E(N) − εν

)
+ ..

..+
1
N !

(N)
φ (r)

(
E(1) − εν

)
..
(
E(N) − εν

)
,

and (87) becomes:

(H − εν)φ (r) = −δN,0δ (r)K, (H − εν)

(N−M)
φ (r)

(N − M)!
=

(N−M−1)
φ (r)

(N − M − 1)!
.

Readers used to the LMTO-ASA method, where – according to (12) – the
KKR matrix is basically the two-center TB Hamiltonian, may not like the
thought of having to differentiate its inverse, the Green matrix, with respect
to energy. (The computer seems to work well with the formalism based on the
Green matrix). Such readers might therefore prefer an NMTO formalism in terms
of kink matrices. For a discrete mesh many ugly relations exist, but the one re-
lation which is conceptually pleasing is the following:

0 = (89)

K0 +K [01]
(
E(N) − ε0

)
+ ..+K [0..N ]

(
E(1) − εN−1

)
..
(
E(N) − ε0

)
,

because it looks like the matrix form of the secular KKR equation: |K (ε)| =
0. This relation may be obtained by taking the Nth divided difference of the
equation: K (ε)G (ε) ≡ 1, using the binomial expression (150) for a product like
in (88), but with K (ε) substituted for φ (ε, r) , and multiplying the result from
the right by G [0...N ]−1

. To find the transfer matrices from (89), we may solve
for E(N) − ε0 and do recursion starting from N=1. The results are:

E(1) − ε0 = −K [01]−1
K0 → −K̇−1K ,

E(2) − ε0 = −
(
K [01] +K [012]

(
E(1) − ε1

))−1
K0 (90)

→ −
(
K̇ − K̈K̇−1K/2

)−1
K,

a.s.o. These low-N expressions are reasonably simple. For N=1, the discrete
form is seen to be identical with (74) and, for a condensed mesh, it reduces
to the well-known expression for the 3rd-generation LMTO. We conclude that
the energy matrices, E(M), are well-behaved functions of the kink matrix and
its divided differences, up to and including Mth order. With M increasing, the
corresponding expressions for E(M) however become more and more compli-
cated. The simplest expression for E(M) is therefore (81), the one which uses
G-language.
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3.2 Variational NMTO Method

The NMTO set has been defined through (69) and (70) in such a way that
its leading errors are proportional to (ε − ε0) .. (ε − εN ). By virtue of the va-
riational principle, solution of the generalized eigenvalue problem (5) with this
basis set will therefore provide one-electron energies, εi, with a leading error
∝ (εi − ε0)

2
.. (εi − εN )2 . The error of the wave function will of course still be

of order (εi − ε0) .. (εi − εN ) , but that is usually all right because, as mentioned
at the beginning of the present section, the MTO scheme is based on the facto-
rization: γ (ε, r) = φ (ε, r)G (ε) , where φ (ε, r) has a smooth energy dependence
and G (ε) provides the poles at the one-electron energies.

Hamiltonian and overlap matrices. For a variational calculation, we need
expressions for the NMTO overlap and Hamiltonian matrices,

〈
χ(N) | χ(N)

〉
and〈

χ(N) |H|χ(N)
〉
. From (69), the Nth divided difference of the contracted Green

function (58) is:

γ(N) ([0..N ] , r) = χ(N) (r)G [0..N ] =
N∑
n=0

φn (r) Gn∏N
m=0, �=n (εn − εm)

(91)

and using now (63), we obtain for the integral over the product of the Mth and
Nth divided differences of contracted Green functions:

〈γ [0...M ] | γ [0....N ]〉 =
N∑
n=0

M∑
n′=0

−G [n, n′]
N∏

m=0, �=n
(εn − εm)

M∏
m′=0, �=n′

(εn′ − εm′)

= −G [[0...M ] ..N ] → −
(M+N+1)

G

(M +N + 1)!
. (92)

This is simply the negative of the (M +N + 1)st Hermite divided difference
(152) of the Green matrix, as proved in Eq. (160) in the Appendix!

Note that the meaning of a matrix equation like (63) is:

〈γRL (εn) | γR′L′ (εn′)〉 = −GRL,R′L′ [n, n′]
= −GRL,R′L′ [n′, n] = 〈γRL (εn′) | γR′L′ (εn)〉 .

In matrix notation, that is: 〈γn | γn′〉 = 〈γn′ | γn〉 , and not: 〈γn | γn′〉 = 〈γn′ | γn〉∗
.

Even without the symmetry of the matrix G [n, n′] with respect to the exchange
of n and n′, it is of course always true that

〈γRL (εn) | γR′L′ (εn′)〉 = 〈γR′L′ (εn′) | γRL (εn)〉∗
,

i.e. that a matrix like 〈γn | γn′〉 is Hermitian: 〈γn | γn′〉 = 〈γn′ | γn〉†
. The

point is, that n is an argument – not an index – of a matrix. Similarly, N and M



Developing the MTO Formalism 45

are not matrix indices in (92). Since the first expression (92) is symmetric under
exchange of N and M, because G [n, n′] is symmetric, we may choose M ≤ N,
and this has in fact been done in the second expression.

From (79) and (92), we now see that the Hamiltonian matrix between the
Nth divided differences of contracted Green functions becomes:

〈γ [0...N ] |H − εN | γ [0...N ]〉 = 〈γ [0...N ] | γ [0..N − 1]〉

= −G [[0..N − 1]N ] → −
(2N)
G

(2N)!
. (93)

Hence, we have arrived at the important results: The NMTO overlap matrix may
be expressed in terms of the Nth-order divided difference and the (2N + 1)st
Hermite divided difference of the Green matrix as:〈

χ(N) | χ(N)
〉

= −G [0...N ]−1
G [[0...N ]] G [0...N ]−1

, (94)

where the – even simpler – result for a condensed mesh was quoted in the Over-
view (20). The Hermite derivative G [[0, ..., N ]] is thus negative definite. The
NMTO Hamiltonian matrix may be expressed analogously, in terms of a 2Nth-
order Hermite divided difference:〈

χ(N) |H − εN |χ(N)
〉
= −G [0...N ]−1

G [[0..N − 1]N ] G [0...N ]−1
. (95)

Here again, the result given in (20) for a condensed mesh is even simpler. The
NMTO Green function is〈

χ(N) |z − H|χ(N)
〉−1

=

G [0...N ] {G [[0..N − 1]N ] − (z − εN )G [[0...N ]]}−1
G [0...N ]

Expressions (94) and (95) for the NMTO overlap and Hamiltonian matrices
are not only simple and beautiful, but they also offer sweet coding and speedy
computation. For a crystal, and transforming to k-representation, one may even
use the representation of contracted Green functions where the overlap and Ha-
miltonian matrices – according to (92) and (93) – are merely −G [[0...N ]] and
−G [[0..N − 1]N ] . In Section 4 we shall see that an energy-dependent linear
transformation of the kinked partial waves does not change the Hilbert space
spanned by an energy-independent NMTO set – but only the individual basis
functions. Therefore, we might also use kinked partial waves φα (ε, r) and the
Green matrix Gα (ε) with phase-shift normalization.

In summary: The variational NMTO scheme requires computation of the kink
matrix and its first energy derivative at theN+1 mesh points. It delivers energies
and wave functions which are correct to order 2N + 1 and N , respectively. This
lower accuracy of the wave functions is appropriate because the kinked partial
waves are rather smooth functions of energy. For the computation of the ∂̇n’s
entering K̇n ≡ a

(
Ḃn − ∂̇n

)
, radial normalization-integrals should be used.
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As an example, for the LMTO method, the Hamiltonian and overlap matrices
are respectively:〈

χ(1) |H − ε1|χ(1)
〉

= −G [01]−1
G [[0] 1] G [01]−1

= (ε0 − ε1) (G0 − G1)
−1

(
−Ġ0 +G [01]

)
(G0 − G1)

−1 (96)

→ −Ġ−1 G̈

2!
Ġ−1 = −K +KK̇−1 K̈

2!
K̇−1K,

and 〈
χ(1) | χ(1)

〉
= −G [01]−1

G [[01]] G [01]−1

= (G0 − G1)
−1

(
−Ġ0 + 2G [01] − Ġ1

)
(G0 − G1)

−1 (97)

→ −Ġ−1
...
G

3!
Ġ−1 = K̇ − KK̇−1 K̈

2!
− K̈

2!
K̇−1K +KK̇−1

...
K

3!
K̇−1K.

The result for a condensed mesh in terms of the kink matrix and its first three
energy derivatives is seen to be almost identical to the one (16), which in pre-
vious LMTO generations required the ASA. To get exactly to (16), one needs to
transform to the LMTO set: χ̂(1) (r) ≡ χ(1) (r) K̇−1/2, which in fact corresponds
to a Löwdin orthonormalization of the 0th-order set. We shall return to this mat-
ter in Sect. 6. From the above relations we realize that – even for a condensed
mesh and N as low as 1 – G-language is far simpler than K-language.

Orthonormal NMTOs. In many cases one would like to work with a repre-
sentation of orthonormal NMTOs, which preserves the RL-character of each
NMTO. In order to arrive at this, we should – in the language of Löwdin –
perform a symmetrical orthonormalization of the NMTO set. According to (94)
such a representation is obtained by the following transformation:

χ̌(N) (r) = χ(N) (r) G [0...N ]
√

−G [[0...N ]]
−1

, (98)

because it yields:〈
χ̌(N) | χ̌(N)

〉
= −

√
−G [[0...N ]]

−1†
G [[0...N ]]

√
−G [[0...N ]]

−1
= 1.

Note that this means: −G [[0..N ]] =
√

−G [[0..N ]]
†√−G [[0..N ]]. In this ortho-

normal representation, the Hamiltonian matrix becomes〈
χ̌(N) |H − εN | χ̌(N)

〉
= −

√
−G [[0...N ]]

−1 †
× (99)

G [[0..N − 1]N ]
√

−G [[0...N ]]
−1

.

To find an efficient way to compute the square root of the Hermitian, positive
definite matrix −G [[0...N ]] may be a problem. Of course one may diagonalize
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the matrix, take the square root of the eigenvalues, and then back-transform,
but this is time consuming. Cholesky decomposition is a better alternative, but
that usually amounts to staying in the original representation. Löwdin orthogo-
nalization works if the set is nearly orthogonal, because then the overlap matrix
is nearly diagonal, and Löwdin’s solution was to normalize the matrix such that
it becomes 1 along the diagonal and then expand in the off-diagonal part, O :

√
1 +O

−1
= 1 − 1

2
O +

3
8
O2 − ... (100)

This should work for the NMTO overlap matrix (94) when the NMTOs are nearly
orthogonal, but it hardly works for −G [[0...N ]] . There is therefore no advantage
in pulling out the factor G [0...N ] , on the contrary. The other way around: In
order to take the square root of −G [[0...N ]] , we should find a transformation,
T, such that T †G [[0...N ]]T is nearly diagonal, and then perform the Löwdin
orthonormalization on the latter matrix. We shall return to this problem in
Sect. 5.

One-orbital model: switching behavior of H(N), L(N)
n , and the varia-

tional energy. Our development of the NMTO formalism has been focused
on its matrix aspects and, through the introduction of energy matrices and by
pointing to the correspondence with classical Lagrange and Newton interpola-
tion of the energy-dependent kinked partial waves, we have tried to make the
reader accept the seemingly uncomfortable fact, that the quantities of interest
do arise by energy differentiations of a Green matrix.

Let us now illustrate the Green-function aspects by considering the 1 × 1
Green matrix (77) for one, normalized orbital: χ̌(N) (r) = Ψj (r) with

〈∣∣χ̌(N)
∣∣2〉 =

1. Note that in this model, j runs over the one-electron energies, which is a dif-
ferent set – with much larger spacing – than the energy mesh whose points
are denoted n and m. For a crystal, and using Bloch-symmetrized NMTOs and
Green matrices, χ̌(N) (k, r) and Ǧ (ε,k) , this would be an s-band model with j
being the radial quantum number. We want the NMTO to describe the i-band
and therefore choose the mesh between εi−1 (k) and εi+1 (k) . In the following
we shall drop the Bloch vector and not necessarily consider a crystal.

We first demonstrate how Ě(N) ≡ H(N) – in this case a 1×1 Hamiltonian (see
Sect.5) – expressed in terms of ratios of energy derivatives of a Green function,
with its singular behavior, produces correct results for the one-electron energy
and how, when the mesh is swept over a large energy interval, H(N) switches
between bands with different radial quantum numbers. From (81) and (78) we
get:

H(N) − εN =
Ǧ [0..N − 1]
Ǧ [0...N ]

= (εi − εN )

1 +
∑
j �=i

∏N−1
m=0

εi−εm

εj−εm

1 +
∑
j �=i

∏N
m=0

εi−εm

εj−εm

.
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Fig. 6. Switching behavior of E(N) (εν) ≡ H(N) (εν) for the orthonormal one-orbital
model defined by Eq. (77) with 4 radial levels: εj = 0, 1, 2, 3.
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Hence, for the model and an energy mesh with N + 1 points, H(N) equals εi
to order N, with an error proportional to (εi − ε0) .. (εi − εN ) , which for a con-
densed mesh becomes (εi − εν)

N+1
. In Fig. 6 we show H(N) (εν) for N = 1 to

6, computed from the above expression for a four-level model with εj = 0, 1, 2,
and 3, and a condensed mesh. We see that H(N) (εν) behaves as it should: It
switches from one level to the next, with the plateau around each level flattening
out as N increases. For N odd, the switching-curve is step-like and, for N even,
the switching is via −∞ → +∞. This comes from the ability of the denominator
in the expression for H(N) to be zero when N+1 is odd. An energy-independent
orbital, as considered in the present model, can of course only describe one band.
With the NMTO defined for a mesh condensed onto a chosen energy εν , we want
to describe the band near εν as well as possible – also if the distance to the next
band is small – and with a result which over a large region is insensitive to the
choice of εν . In a multi-orbital calculation, we should fold down those channels
which are switching in the energy range of interest into the screened spherical
waves. This will remove schizophrenic members of the NMTO set and prevent
the possible occurrence of ghost bands.

In the one-orbital model, the estimate of a true, normalized wave function,
φ̌ (εi, r) , is the Nth-order muffin-tin orbital: χ̌(N) (r) =

∑N
n φ̌n (r)L

(N)
n . If we

now use (77) and (78) to evaluate expression (73) for the Lagrange weights, we
find:

L(N)
n =

∑
j

1
εj−εn∑

j

1
εj−εn

∏N
m=0, �=n

εn−εm

εj−εm

= l(N)
n (εi)

1 +
∑
j �=i

εi−εn

εj−εn

1 +
∑
j �=i

∏N
m=0

εi−εm

εj−εm

,

where l
(N)
n (ε) is the Lagrange polynomial (146) of degree N . We have therefore

reached the conclusion that – in our orthonormal model, and to leading order –
the wave function is the energy-dependent MTO, φ̌ (ε, r) , Lagrange interpolated
over the (N+1)-point mesh.

Since the error of an NMTO set is of order N+1, use of the variational
principle will reduce the error of the one-electron energies, εi, from that of the
highest transfer matrix, H(N) − εN , to order 2(N+1). The variational energies
are thus correct to order 2N+1. For a condensed mesh, this also follows trivially
from (94)-(95), which show that the variational energy, with respect to εν , is:〈

χ(N) |H − εν |χ(N)
〉〈

χ(N) | χ(N)
〉 =

(2N)
G

(2N)!

/ (2N+1)
G

(2N + 1)!
= H(2N+1) − εν .

The odd-ordered switching curves H(1) (εν) , H(3) (εν) , and H(5) (εν) shown in
the left-hand panel of Fig. 6 are thus the variational estimates resulting from
the use of respectively the 0th, 1st, and 2nd-order NMTO, that is, the MTO,
the LMTO, and the QMTO. These curves are well behaved.

The expression for the variational energy in the one-band model can be eva-
luated exactly, also for a discrete mesh, and yields a transparent result. We use
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the double-mesh procedure explained in the Appendix after (152), and let the
differences εn ≡ εn+N+1 − εn shrink to zero. From (78) we then get:

Ǧ [[0...N ]] = −
∑
j

1∏N
m=0 (εj − εm)2

, (101)

Ǧ [[0..N − 1]N ] = −
∑
j

1

(εj − εN )
∏N−1

m=0 (εj − εm)2
,

and for the variational energy (99):

〈
χ̌(N) |H − εN | χ̌(N)

〉
= (εi − εN )

1 +
∑
j �=i

εi−εN

εj−εN

∏N−1
m=0

(
εi−εm

εj−εm

)2

1 +
∑
j �=i

∏N
m=0

(
εi−εm

εj−εm

)2 ,

which of course agrees with the variational principle.
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Fig. 7. Minimal-basis LMTO energy bands (dashed) of GaAs for two different choices
of the screening-radii compared to the exact KKR band structure (solid). In the left-
hand panel all screening radii were ∼ 0.8t, while in the right-hand panel the Ga d
radius was reduced to the radius of the Ga 3d core [24]. See text.

Treating semi-core and excited states: GaAs. An accurate description of
the cohesive properties of GaAs requires a good band-structure calculation of the
five Ga 3d10 semi-core, the As 4s2-band, and the three As 4p2 Ga 4sp3 valence
bands. If also the four lowest conduction bands must be described, one is faced
with the problem of computing a band structure containing extremely narrow
as well as wide bands over a 20 eV-region. To do this ab initio with a minimal
Ga spd As sp basis set (13 orbitals per GaAs), has hitherto not been possible.
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With 1st and 2nd-generation LMTO-ASA methods one would normally use
Rl-dependent εν ’s and employ a 36-orbital-per-GaAs basis, consisting of the spd
LMTOs centered on the Ga, the As, and the interstitial sites in the zincblende
structure. The conduction-band errors arising from the choice κ2=0 are so large
that the combined correction is needed. Downfolding works for the p and d
orbitals on the two interstitial spheres, but not for the interstitial s and the As
d orbitals. With the 3rd-generation LMTO method, downfolding works much
better, but the energy window is now screening dependent, and the use of Rl-
dependent εν ’s is avoided because it messes up the formalism.

In Fig. 7 we show – in full lines – the exact (up to 7eV) LDA band structure
calculated by the screened KKR method, i.e. by the 3rd-generation LMTO me-
thod using many energy panels and the Ga spd As sp basis. The five Ga 3d10

semi-core bands are at – 15 eV, the As 4s2-band is around – 12 eV, and the three
As 4p2 Ga 4sp3 valence bands extend from – 7 to 0 eV. Above the gap, there
are the four As 4p4 Ga 4sp3 conduction bands. The dotted lines give results of
3rd-generation LMTO variational calculations with a condensed mesh and an εν
in the middle of the three valence bands. In the left-hand
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Fig. 8. Mean error in each of the three types of occupied valence bands in GaAs
calculated with the LMTO and QMTO methods as a function of the expansion energy
εν for a condensed mesh [24]. See Fig. 7 and text.

figure, the screening-sphere radii for the active Ga spd and As sp channels were
chosen at the Ga and As default values, respectively 0.82t and 0.78t, where t is
half the nearest-neighbor distance. We see that the entire valence-band structure
is distorted by hybridization with Ga d ghost bands. The dotted bands in the
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right-hand figure result after changing the Ga d screening-sphere radius to 0.35t,
which is close to the actual radius of the Ga 3d core. Now, the band structure
looks reasonable: The valence bands near εν are perfect, but the Ga 3d bands
are nearly 0.5 eV to high [24].

That the variational LMTO method with a minimal basis and a single εν
cannot describe all occupied states of GaAs with sufficient accuracy, becomes
even more obvious from the left-hand side of Fig. 8, where we show – as functions
of εν – the average errors of the five Ga 3d bands, those of the As 4s band, and
those of the three valence bands. The error ∝ (εi (k) − εν)

4 of the variational
energy is clearly visible for the narrow Ga 3d and As 4s bands. With εν ’s in
a narrow range around – 11 eV, the variational error in the sum of the one-
electron energies gets down to about 250 meV per GaAs. On the right-hand
side, we show the same quantities, but obtained with the QMTO method. Now
the errors ∝ (εi (k) − εν)

6 are acceptable, and there is a comfortable range of
εν ’s around – 10 eV where the error in the sum of the one-electron energies
does not exceed 25 meV per GaAs. The screening-sphere radii chosen in these
calculations [24] were: 0.93t, 1.05t, and 0.35t for respectively Ga s, p, and d, and
0.89t and 1.00t for respectively As s and p.
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Fig. 9. Like Fig. 8, but calculated using discrete meshes and as functions of the position
of the last energy point. The first energy points were fixed at the positions indicated
on the abscissa [24]. See text.

In Fig. 9 we show the same kind of results, but this time obtained with
the discrete (Lagrange) LMTO and QMTO methods. The size of the basis set,
the screening-sphere radii, etc., were as in Fig. 8. For the LMTO method, ε0
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was fixed at the position of the Ga 3d bands and the figure shows the result
of varying the position ε1 of the other mesh point. The quadratic dependence
on ε1 of the variational energy-error ∝ (εi (k) − ε0)

2 (εi (k) − ε1)
2 is clearly re-

cognized. Compared with the results of the tangent LMTO method shown in
the previous figure, those of the chord-LMTO are far superior: With ε1’s aro-
und – 5 eV, the variational error in the sum of the one-electron energies gets
down to about 30 meV per GaAs, and yet, for N given, the method employing
a discrete mesh is computationally simpler than the one employing a conden-
sed mesh. On the right-hand side of the figure, we show the QMTO results
as functions of ε2, with ε0 fixed at the Ga 3d position, and ε1 at the As 4s
position. Here again, the quadratic dependence on ε2 of the variational energy-
error ∝ (εi (k) − ε0)

2 (εi (k) − ε1)
2 (εi (k) − ε2)

2 may be seen. We realize, that
with this discrete QMTO method, meV-accuracy for the sum of the one-electron
energies can be reached.

Finally, in Fig 10 we show the GaAs band structure in a wide (40 eV) range
around the gap. Further conduction bands now appear above 7 eV and we needed
to employ a basis consisting of the Ga spd As spdf 2E s QMTOs. ε0 was chosen
at the Ga 3d position, ε1 near the gap, and ε2 10 eV above the gap. The results
of this discrete QMTO calculation shown by the dotted curves agree superbly
with those of a multi-panel LMTO (=KKR) calculation shown in full line [24].
This proves the power of the 3rd-generation NMTO method.

Massive downfolding: CaCuO2. An increasingly important field of research
is the electronic structure of real materials with strongly correlated conduction
electrons. Within a given class of materials, fine-tuning of the interesting pro-
perties will require detailed knowledge of the single-electron part – the orbitals,
hopping integrals and basic on-site terms – of the correlated Hamiltonian. In the
previous review [20] of the 3rd-generation 0th- and 1st-order differential MTO
method, we demonstrated for the idealized high-temperature superconductor,
CaCuO2 with dimpled CuO2 planes, how one could extract low-energy, few-
band Hamiltonians by massive downfolding; in the extreme limit: Downfolding
to one Cu dx2−y2 orbital per Cu site [22,23]. Let us now reconsider this example
in the light of the new NMTO methods.

In Fig. 11 the full lines in all four parts show the (same) full LDA band
structure in a ±3 eV region around the Fermi level, which for the doping levels
of interests would be near the energy −0.8 eV of the so-called extended saddle-
point at X. The conduction band has mostly O-Cu anti-bonding pdσ-character
(O px – Cu dx2−y2) with the bonding partner lying 10 eV lower in energy. The
bottom of the conduction band is seen to cross and hybridize with a multitude of
O-Cu pdπ-bands lying below – 1.2 eV. The top of the conduction band hybridizes
strongly with a broad O-Ca bonding pdπ (O px – Ca dxy) band near A. In
this situation, one clearly does not want to use the rather ill-defined and very
long-ranged Wannier orbital for describing the low-energy electronic structure.
Rather, one wants an orbital which describes the band (including its dependence
on other relevant low-energy excitations such as spin-fluctuations and phonons)
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Fig. 10. Energy bands of GaAs calculated with the QMTO method and the energy
mesh indicated on the right-hand side (dashed) as compared with the exact KKR result
(solid) [24]. See text.

in the ±200meV range around εF , that is an NMTO with all channels, except
Cu dx2−y2 , downfolded and with as short a range as possible. The four dotted
bands shown in each of the sub-figures result from such calculations [24]. In all
cases, the screening-sphere radius of Cu dx2−y2 was taken to be 0.62t. The upper
figures illustrate a problem with the 3rd-generation tangent LMTO method: If
εν is taken where we want it to be, at the −0.8 eV saddle-point deep down in the
anti-bonding pdσ-band, then the method develops a schizophrenia near the top
of the band, above 1 eV and near M, which is apparently sufficiently far away
from εν that the LMTO ’might consider’ describing the bonding rather than the
anti-bonding state.
The resulting orbital has very long range due to the high Fourier components
caused by the schizophrenia and, as a result, we are forced to take εν at a higher
energy than we actually want. With εν= – 0.3 eV, we still get long range as
seen in the upper left-hand figure, and in order to cure that problem we need to
go to εν=+0.3 eV, but then the description of the bottom of the anti-bonding
band, the extended saddle-point in particular, has substantially deteriorated. In
the lower left-hand figure we have now switched from the tangent to the chord
LMTO, and that is seen to help considerably. Finally, the lower right-hand figure
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Fig. 11. Conduction band of CaCuO2 calculated by massive downfolding to a single
Cu x2 − y2 NMTO (dotted) compared with the full band structure (solid) [24]. See
text.

presents what might be called an ’overkill’: We have used the discrete CMTO
(N=3) method, and the agreement with the exact result is superb.

Using integrals of divided differences of MTOs. In all previous derivations
of the variational LMTO method, the LMTO was expressed as a matrix Taylor
series (1) and the Hamiltonian and overlap matrices (7) were worked out using
expressions (12) for

〈
φ | φ̇

〉
and

〈
φ̇ | φ̇

〉
.

The same may be done for the general, discrete NMTO method, although the
number of terms in the resulting series increases quadratically with N . For this,
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we first use a divided-difference form – such as (88) – for the NMTO and then
need expressions for the overlap integrals, 〈φ [0..N ] | φ [0..M ]〉 , and Hamiltoni-
ans, 〈φ [0..N ] |H|φ [0..M ]〉 , between divided differences of kinked partial waves.
Since expressions (62) and (63) are formally equivalent, we find that, analogous
to (92),

〈φ [0..M ] | φ [0...N ]〉 = 〈φ [0...N ] | φ [0..M ]〉 = K [[0..M ] .N ] (102)

→
〈 (M)

φ

M !
|

(N)
φ

N !

〉
=

〈 (N)
φ

N !
|

(M)
φ

M !

〉
=

(M+N+1)
K

(M +N + 1)!
,

where we have assumed M ≤ N. From this result for M = N, it follows that the
odd-ordered Hermite divided differences of the kink matrix are positive definite.
For a contracted mesh, this overlap matrix is seen to depend only on M +N.

For the matrix elements of the Hamiltonian we must use:

〈φ [0..M ] |H − εn|φ [0...N ]〉 = 〈φ [0..M ] | φ [0..n − 1, n+ 1..N ]〉

=
{
K [[0..n − 1, n+ 1..min (M,N)]n..max (M,N)]
K [[0..min (M,N)] ..n − 1, n+ 1..max (M,N)] (103)

→
〈 (M)

φ

M !
|H − εν |

(N)
φ

N !

〉
=

〈 (M)
φ

M !
|

(N−1)
φ

(N − 1)!

〉
=

(M+N)
K

(M +N)!
.

The upper and lower results on the second line correspond to n � min (M,N).
Here again, for a condensed mesh the Hamiltonian matrix depends only on M +
N.

The resulting expressions for
〈
χ(N) | χ(N)

〉
and

〈
χ(N) |H − εn|χ(N)

〉
contain

the above-mentioned integrals times products of
(
E(N−M+1) − εM−1

)
-matrices.

These expressions are by far not as explicit as equations (94) and (95), and they
are more complicated for a discrete than for a condensed mesh. We shall now
consider a more useful application of (102)-(103).

Charge density and total energy: Si phase diagram. The wave function
obtained from a variational calculation is: Ψi (r) = χ (r) ci , where we have drop-
ped the superscript (N) on the NMTO. The eigen(column)vector, ci, of the gene-
ralized eigenvalue equation (5) should be normalized according to: c†

i 〈χ | χ〉 ci′ =
δii′ , or – regarding cRL,i as a matrix – according to: c† 〈χ | χ〉 c = 1. The charge
density is now given by (18), which to a very good approximation is (64) with the
energy-dependent wave functions in expressions (65)-(66) substituted by their
matrix Lagrange or Newton series. The computer code would use the Lagrange
form:

ρ (r) = χ (r) cc†χ (r)† =
∑
nn′

φn (r) Lncc
†L†

n′ φn′ (r)† ,
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so that in this case, the density-of-states matrix Γ (ε) in (67) should be substi-
tuted by:

Γnn′ ≡ Ln

(
occ∑
i

cic
†
i

)
L†
n′ . (104)

Equations (65)-(66) then become:

ρψ (r) ≡
∑
RR′

∑
LL′

∑
nn′

ψRL,n (rR) ΓRL,n;R′L′,n′ ψR′L′,n′ (rR′)∗ , (105)

ρϕR (r) =
∑
LL′

YL (r̂)Y ∗
L′ (r̂)

∑
nn′

ϕRl,n (r) ΓRL,n;RL′,n′ ϕRl′,n′ (r) ,

ρϕ
◦

R (r) =
∑
LL′

YL (r̂)Y ∗
L′ (r̂)

∑
nn′

ϕ◦
Rl,n (r) ΓRL,n;RL′,n′ ϕ◦

Rl′,n′ (r) .

If one feels that, with the variational NMTO method, the KKR equations have
been solved with sufficient accuracy, then one may even use (65)-(67) as they
stand, and interpolate the energy dependences of the wave functions using the
classical Lagrange or Newton methods (146) and (147).

In order to solve Poisson’s equation and to compute the Coulomb- and
exchange-correlation integrals for the total energy and forces, we need to fit the
charge density by suitable functions. The properties of ρ(r) to which we have
most easy access are its spherical-harmonics expansions around the various sites.
For the fitting we therefore choose atom-centered NMTO-like functions which
have the following advantages: (1) they are the unitary functions for continuous
fitting at non-touching a-spheres, (2) they are localized, (3) we know the result
of operating on them with ∇2, and (4) the integral of any product of two such
functions is the energy derivative of a kink matrix (102)-(103).

Our fitting procedure [47] can be outlined as follows: We first place a set
of screening spheres around each atomic site. This defines our screened Hankel
functions (29) and divides space into non overlapping intra-sphere parts and an
interstitial part. It is not necessary to place screening spheres at interstitial si-
tes, even though the resulting interstitial can be very large. In the intra-sphere
region we use a spherical-harmonics expansion of the charge density, with the
components ρRL(r) known on a radial mesh. As the screening spheres are rela-
tively small this summation can be truncated at l=3 or 4. In the interstitial we
expand in the screened Hankel functions, naRL (ε, rR) , normalized as in (45) and
with 3 different, negative energies, of which the lowest is about 4 times the work
function, that is:

ρ(r) ≈
2∑

n=0

∑
RL

naRL (εn, rR) λRL;n =
∑
RL

n̆aRL (rR)µRL + (106)

∑
RL

(
naRL (rR) ρRL (a) + naRL ([01] , rR)

∑
R′L′

XRL,R′L′ ρR′L′

)
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Fig. 12. Total energy of Si as a function of the atomic volume for different structures
calculated with the full-potential LMTO method [34] and with the present full-charge
scheme [49,47,48]. See text.

for all rR ≥ aRL. With three energies, we can in principle fit continuously with
continuous 1st and 2nd derivatives. However, in practice it is difficult to compute
the 2nd radial derivatives of the high-l components of the charge density. We
therefore determine the matrix X in such a way that the fitting is continuous
and once differentiable, that is: X = Ba [01]−1 (∂ {ρ (a)} − Ba

0 ) . The functions
n̆aRL (rR) in (106) are those linear combinations of the three na (εn, r)’s whose
value and radial slope vanish in all channels at the screening spheres. These
functions therefore peak in the interstitial region and their coefficients µRL are
determined by a least squares fit in the region interstitial to the MT-spheres,
by sampling the full charge (105), as well as the expansion (106) at a set of
pseudo-random points. Once the expansion is obtained, it is very easy to solve
Poisson’s equation. In the intra-sphere part this is done numerically and in the
interstitial analytically by virtue of the screened Hankel functions solving the
wave equation. The same expansion procedure can be applied to the exchange-
correlation energy density ε(r) and potential µ(r). This gives a full potential. The
total energy Etot is also easy to evaluate. The interstitial part of the integrals
reduces simply to a summation over Hermite divided differences of the slope
matrix.

We have applied this procedure to look at the total energy of various pos-
sible structures for silicon [49]. For each structure we perform a standard self
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consistent LMTO-ASA calculation. In the last iteration an expansion of the full
charge density is made and Etot evaluated correctly. The result is shown in Fig.
12 where, for comparison, we show the full-potential LMTO result from Ref.
[34].
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Fig. 13. Rms error of the valence-band energies in diamond-structured Si as a function
of the overlap in the atom-centered MT-potential [42,43]. See text.

Overlapping MT-potential: Si without empty spheres. The phase dia-
gram of Si just shown was calculated using LMTOs defined for MT-potentials
with empty spheres. We now consider the possibility offered by Eq. (28) of allo-
wing the atom-centered sphere a substantial overlap – like the 50% radial overlap
shown in Figs. 2-5 – and, hence, of getting rid of the empty spheres.

The first question is: How to construct such a potential? Our answer is [42]
that the potential should be constructed such as to minimize the mean squared
deviation of the valence-band energies from the ones for the full potential. From
this condition, it then follows that the overlapping MT-potential,

∑
R v (rR) ,

should be the least-squares approximation to the full-potential, V (r), weigh-
ted with the valence charge density. This yields a set of coupled equations for
the shape, f (r) ≡ v (r) − g, and the zero, g, of the MT-potential. The equa-
tion which arises from requiring stationarity with respect to δg is of course:∫
(V −

∑
v) ρd3r = 0, and it means that the error in the sum of the valence-

band energies should vanish to leading order. The other equations, which arise
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by requiring stationarity with respect to δf (r) , are coupled integral equations,
which are complicated due to the presence of the charge-density weighting. Ta-
king the charge density to be constant in space, corresponds to minimizing the
mean squared energy-deviation for the entire spectrum, rather than merely for
the valence band. Now, in our present implementation, we only took the spatial
behavior of the charge density into account in the δg-equation. The resulting
potentials for diamond-structured Si were shown in Figs. 10 and 11 of Ref. [20].
We have recently succeeded in obtaining the overlapping MT potential from the
full potential obtained from the charge density (106) [43], but in the present
paper we shall only show results obtained by taking the full potential to be the
Si+E ASA potential – like in Ref. [20].
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Fig. 14. Band structure of Si calculated with the 3rd-generation LMTO method for the
self-consistent Si+E MT-potential (dashed) and for the Si-centered, 60%-overlapping
MT-approximation to it (solid). The latter calculation included the correction for the
kinetic-energy error Eq. (28) in the LMTO Hamiltonian, and the value of the MT-zero
was adjusted in such a way that the average energy of the valence band was correct.
Hence, the solid band structure corresponds to the last point on the curve marked
’ideal’ in Fig. 13 [42,43]. See text.
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Fig. 13 shows three different results for the rms error of the valence-band
energy as a function of the linear overlap, ω ≡ (s/t)−1. For the overlap increasing
up to about 30%, the rms error falls in all cases, simply because the overlapping
MT-potential becomes an increasingly better approximation to the full potential.
Without any overlap correction, the kinetic-energy error (28), which is of second
order in the potential overlap, initially rises proportional to v (s)2 ω4 [20], and
this is seen to limit the maximum overlap to about 30%. We may, however, use
the LMTO equivalent [43] of Eq. (28) to correct each band energy, εi (k) , and the
results are shown by the two other curves. The dashed curve – marked ’present
technique’ – uses the δg-equation as given above, whereas the ’ideal’ curve was
obtained by adjusting g – iteratively, because g enters the δf (r) equations – to
have the mean error of the valence-band energy vanish exactly. It is possible to
improve upon the ’present technique’ without knowing the valence-band energy
a priori, and we are currently including charge-density weighting in the δf (r)-
equations. This makes the curve flatten out – like the one marked ’ideal’ [43].

The solid curves in Fig. 14 show the Si band structure obtained with the
60% overlapping MT-potential, including the LMTO overlap correction, and
determining g to yield vanishing mean error of the valence band. The dotted
curve is the ’exact’ result as obtained with a (3rd-generation) LMTO calculation
for the Si+E potential. The errors seen in the valence band are certainly no larger
than 30 meV, but those in the conduction band are larger.

4 Energy-Dependent Linear Transformations

If one considers Fig. 1, it might seem as if the energy-window over which an
NMTO set yields good approximations to the wave functions will be wider if one
starts out from energy-dependent linear combinations of kinked partial waves:

φ̂ (ε, r) ≡ φ (ε, r) T̂ (ε) , (107)

which have smoother energy dependencies. Normalized kinked partial waves and
Löwdin orthonormalized kinked partial waves are examples of cases where the
divergences of the kinked partial waves at the energies, εaRL, where a node passes
through the screening radius, are avoided. The transformation given by the –
in general non-Hermitian – matrix T̂ (ε) mixes kinked partial waves with the
same energy and different RL’s linearly. Although the Hilbert spaces spanned
by the energy-dependent sets, φ (ε, r) and φ̂ (ε, r) , are identical, it is not obvious
that those spanned by the respective polynomial approximations, χ(N) (r) and
χ̂(N) (r) , are also identical, particularly not if one bears only Fig. 1 in mind.

Depending on the transformation, the resulting φ̂ (ε, r) may completely have
lost its original RL-character. Since the linear combination, φ̂ (ε, r) , of kinked
partial waves has active radial functions on other sites, as well as at its own
site for other L’s, it is not a kinked partial wave in the usual sense, that is, one
which could have been obtained by a screening transformation. Remember, that
for 3rd-generation kinked partial waves, a screening transformation is not linear.
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In the following, we shall assume that the screening radii have been chosen at the
previous step, in the screening calculation for the structure matrix, and perhaps
by subsequent re-screening of the Gn’s using (55).

A further motivation for considering transformed kinked partial waves is
that they might provide the freedom to obtain energy matrices (81) which are
Hermitian. This would simplify the finite-difference expressions (86) and (88) for
the NMTO so that they take the simpler form (1) which then – like in (3) – could
be diagonalized to leading order by the eigenvectors of Ê(N). From expression
(85) for the transfer matrix, we realize that the condition that a transformed
Ê(M) be a Hamiltonian matrix, is that we can find a transformation with the
property that 〈

χ̂(M) | χ̂(M−1)
〉

= 1. (108)

This formalism could therefore also be the basis for obtaining an orthonormal
NMTO set.

Let us finally express the important equations (57)-(63) in terms of the trans-
formed kinked partial waves:

(H − ε) φ̂ (ε, r) = −δ (r) K̂ (ε) , (H − ε) φ̂ (ε, r) Ĝ (ε) = −δ (r) , (109)

where we have defined the non-Hermitian matrices

K̂ (ε) ≡ K (ε) T̂ (ε) , Ĝ (ε) ≡ K̂ (ε)−1 = T̂ (ε)−1
G (ε) . (110)

Note that these definitions do not correspond to similarity transformations. The
kink matrix, K (ε) , and thereby its inverse, G (ε) , were originally defined in such
a way that they are Hermitian, but they are inherently ’skew’, because (109) tells
us that it is the ’one-sided’ contraction of the Green function,

γ (ε, r) = φ (ε, r)G (ε) = φ̂ (ε, r) Ĝ (ε) , (111)

which is invariant. For the same reason, the integrals of the products of two
contracted Green functions, with possibly different energies, form an overlap
matrix,

Ĝ (ε)†
〈
φ̂ (ε) | φ̂ (ε′)

〉
Ĝ (ε′) = −G (ε) − G (ε′)

ε − ε′ , (112)

which is independent of T̂ (ε) .
Adding to the discussion following (92) about the meaning of the matrix

equation 〈φn | φn′〉 = 〈φn′ | φn〉 , note that this equation does not hold in a
general representation:

〈
φ̂n | φ̂n′

〉
= T̂ †

nT̂
†−1
n′

〈
φ̂n′ | φ̂n

〉
T̂−1
n T̂n′ �=

〈
φ̂n′ | φ̂n

〉
,

unless T̂n = T̂n′ . But it is of course always true that
〈
φ̂n | φ̂n′

〉
=

〈
φ̂n′ | φ̂n

〉†
.

We now come to derive NMTOs from the transformed kinked partial waves
(107). Since the arguments around expression (69) concerned the contracted
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Green function, which according to (111) is invariant, (69) is unchanged but
should be rewritten in the form:

χ̂(N) (ε, r) Ĝ (ε) = φ̂ (ε, r) Ĝ (ε) −
N∑
n=0

φ̂n (r) ĜnA(N)
n (ε) . (113)

As a consequence, (70) should be substituted by:

χ̂(N) (r) =
∆N φ̂ (r) Ĝ
∆ [0..N ]

(
∆N Ĝ

∆ [0..N ]

)−1

=
∆Nφ (r)G
∆ [0..N ]

(
∆N Ĝ

∆ [0..N ]

)−1

. (114)

The last equation (114) shows that the polynomial approximation to the
transformed energy-dependent NMTO, χ̂(N) (ε, r) = χ(N) (ε, r) T̂ (ε) , is

χ̂(N) (r) = χ(N) (r) G [0...N ] Ĝ [0...N ]−1
, (115)

which is a linear transformation. Hence, regardless of the energy-dependent
transformation T̂ (ε) of the kinked partial waves, all NMTO sets span the same
Hilbert space and all energy-windows are therefore identical. This disproves the
above-mentioned naive conclusion drawn from Fig. 1. Since G (ε) = T̂ (ε) Ĝ (ε) ,
we may express the NMTO transformation (115) as a Newton series (88) for
T̂ (ε) :

G [0...N ] Ĝ [0...N ]−1 =
(
T̂ Ĝ

)
[0...N ] Ĝ [0...N ]−1 (116)

=
∑N

M=0
T̂ [0..M ] Ĝ [M..N ] Ĝ [0...N ]−1

= T̂0 + ..+ T̂ [0...N ]
(
Ê(1) − εN−1

)
..
(
Ê(N) − ε0

)
.

Since the contracted Green function is invariant, so are equations (92) and (93)
which relate the overlap and Hamiltonian integrals of such functions to Hermite
divided differences of G (ε) . For the NMTO overlap and Hamiltonian matrices,
we therefore obtain (94) and (95), with the prefactor substituted by Ĝ [0..N ]−1†

,

the postfactor substituted by Ĝ [0..N ]−1
, and the Hermite divided differences of

G (ε) unaltered.
The first equation (114) shows that the expressions derived previously for the

NMTOs, excluding those for integrals over NMTOs, may be taken over, after
these expressions have been subject to the following substitutions:

φ (ε, r) → φ̂ (ε, r) , K (ε) → K̂ (ε) , L
(N)
n → L̂

(N)
n ,

χ (ε, r) → χ̂ (ε, r) , G (ε) → Ĝ (ε) , E(M) → Ê(M).
(117)

Remember, that the substitutions for K (ε) and G (ε) do not correspond to a
similarity transformation.

As long as we only consider T̂ (ε)-transformations which are independent
of N , the step-down relation (80) holds for the transformed NMTOs and for
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its transfer matrices, because the derivation merely made use of (57), which
transforms into (109). This shows that Ê(0) − ε0 equals −K̂0 = −K0T̂0, as
expected, but that:

〈
χ̂(0) | χ̂(−1)

〉
= 1 does not hold. The hatted version of (85)

therefore only holds for N ≥ 1. For N = 0 :〈
χ̂(0) |H − ε0| χ̂(0)

〉
= −T̂ †

0K0T̂0 = T̂ †
0

(
Ê(0) − ε0

)
≡ Ĥ(0) − ε0. (118)

The expressions for the transformed NMTO in terms of divided differences of
transformed kinked partial waves are the hatted versions of (86) and (88). One
should remember that the divided difference, φ̂ ([0..M ] , r) , is a linear combi-
nation of the M + 1 functions φ0 (r) T̂0, .., φM (r) T̂M , and hence, a linear com-
bination of the M + 1 divided differences: φ0 (r) , .., φ ([0..M ] , r). This is the

generalization of the property: dφ (ε, r) T̂ (ε) /dε|εν
= φ̇ (r) T̂ + φ (r)

.

T̂ , used in
the 2nd-generation LMTO formalism. Explicitly:

φ̂ ([0...M ] , r) =
M∑
n=0

φn (r) T̂n∏M
m=0, �=n (εn − εm)

(119)

=
M∑
m=0

φ ([m..M ] , r) T̂ [0..m] = φ ([0...M ] , r) T̂0 + ..+ φM (r) T̂ [0...M ] .

The transformed versions of the results (102), (103) are complicated, unless T̂ (ε)
is independent of ε. In that case, the right-hand sides just have K (ε) substituted
by T̂ †K (ε) T̂ ≡ K̄ (ε) .

Usually
〈
φ̂ [0..M ] | φ̂ [0..N ]

〉
�=

〈
φ̂ [0..N ] | φ̂ [0..M ]

〉
, unless T̂ (ε) = T̂ , or

the matrix is diagonal;
〈
φ̂ [0..M ] | φ̂ [0..N ]

〉
=

〈
φ̂ [0..N ] | φ̂ [0..M ]

〉†
of course

always holds.

5 Hamiltonian Energy Matrices and Orthonormal Sets

Having seen that an energy-dependent, linear transformation (107) of the MTO
set does not change the Hilbert space spanned by the set of energy-independent
NMTOs, but merely the individual basis functions, we now turn to the objective
of finding a representation in which the energy matrices Ê(M) – but not neces-
sarily the Green matrix Ĝ (ε) – are Hermitian. The energy matrices will then be
the two-center Hamiltonians entering expressions like (1) for the orbitals. From
(85), we obviously want:

Ê(M) − εM =
〈
χ̂(M) |H − εM | χ̂(M)

〉
≡ Ĥ(M) − εM (120)

for 1 ≤ M ≤ N, and since this condition leads to the near-orthonormality
condition (108), it guides the way to make one of the NMTO sets – let us call
it the Lth – orthonormal.
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In order to solve the N near-orthonormality conditions for the Hamiltonian
matrices, we first insert the transformed version of expression (83) for the in-
verse of the Mth divided difference of the Green matrix in terms of the transfer
matrices and Ĥ(0) − ε0, defined by (118),

−Ĝ [0...M ]−1 = T̂−1†
0

(
Ĥ(0) − ε0

)(
Ĥ(1) − ε1

)
..
(
Ĥ(M) − εM

)
, (121)

into the transformed version of expression (95) for the Hamiltonian in terms of
the 2Mth Hermite divided difference of the original Green matrix G (ε) . We
then use (120) and notice that one factor Ĥ(M) − εM cancels out so that the
equation may be solved for this highest transfer matrix:

Ĥ(M) − εM =


(
Ĥ(M−1) − εM−1

)
..
(
Ĥ(1) − ε1

)(
Ĥ(0) − ε0

)
×T̂−1

0 (−G [[0..M − 1]M ]) T̂−1†
0

×
(
Ĥ(0) − ε0

)(
Ĥ(1) − ε1

)
..
(
Ĥ(M−1) − εM−1

)


−1

for M ≥ 1. Solving recursively for the transfer matrices, and including (118) at
the top, we obtain the following results:

Ĥ(0) − ε0 = −T̂ †
0G [[ ] 0]−1

T̂0

Ĥ(1) − ε1 = −T̂−1
0 G [[ ] 0] G [[0] 1]−1

G [[ ] 0] T̂−1†
0

Ĥ(2) − ε2 = −T̂ †
0G [[ ] 0]−1

G [[0] 1] G [[01] 2]−1
G [[0] 1] G [[ ] 0]−1

T̂0

Ĥ(M) − εM = −T̂
(−1)M (†)M+1

0 G [[ ] 0](−1)M+1

... G [[0..M − 1]M ]−1

...G [[ ] 0](−1)M+1

T̂
(−1)M (†)M

0 , (122)

where for reasons of systematics we have used the notation (154):

G [[ ] 0] = G [0] = G0 = K−1
0 ,

explained in the Appendix.
The divided differences (121) of the transformed Green matrix are needed

for specification of the transformation via (110), the orbitals via (115), or the
transformed kinked partial waves via (111), and are seen to be given by:

Ĝ [0]−1 = G [[ ] 0]−1
T̂0

Ĝ [01]−1 = −G [[0] 1]−1
G [[ ] 0] T̂−1†

0 (123)

Ĝ [012]−1 = G [[01] 2]−1
G [[0] 1] G [[ ] 0]−1

T̂0

Ĝ [0...M ]−1 = (−)M G [[0..M − 1]M ]−1
...G [[ ] 0](−1)M+1

T̂
(−1)M (†)M

0 .

Since we originally had the N + 1 matrices T̂0...T̂N at our disposal and have
usedN to satisfy the near-orthonormality conditions, we have one, T̂0, left. This –
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and thereby implicitly also the other T̂n’s – may now be chosen equal to a matrix,
Ť0, which makes the Lth set orthonormal. Note that whereas the transformation
T̂ (ε) did not depend on the order of any basis set, the transformation Ť (ε) does;
it depends on L.

Let us first discuss whether the transformation (98) to an orthonormalized
NMTO set may at all be arrived at by an energy-dependent linear transfor-
mation of the kinked partial waves: According to (115), othonormality of the
Lth set happens for any transformation Ť (ε) which satisfies:

(
Ť−1G

)
[0...L] =

(−G [[0...L]])1/2 , where G [[0..L]] is the (2L + 1)st Hermite divided difference
(152) of the original Green matrix. Hence, this is a linear equation between the
L + 1 values of the matrix Ť (ε)−1 at the first L + 1 mesh points, and it is
therefore plausible that it may be used to fix Ť0.

The better way of writing this equation is, like for the Hamiltonian matrix,
to insert (121) for Ĝ [0..L]−1 into the transformed version of expression (94) for
the overlap matrix. As a result:〈

χ̂(L) | χ̂(L)
〉
=

(
Ĥ(L) − εL

)
..
(
Ĥ(1) − ε1

)(
Ĥ(0) − ε0

)
× (124)

T̂−1
0 (−G [[0..L]]) T̂−1†

0

(
Ĥ(0) − ε0

)(
Ĥ(1) − ε1

)
..
(
Ĥ(L) − εL

)
= −T̂

(−1)L(†)L+1

0 G [[ ] 0](−1)L+1

..G [[0..L]] ..G [[ ] 0](−1)L+1

T̂
(−1)L(†)L

0 .

We see that the equation
〈
χ̂(L) | χ̂(L)

〉
= 1, in contrast to the equation:〈

χ̂(M) |H − εM | χ̂(M)
〉
= Ĥ(M) − εM , is quadratic in all Hamiltonians, and the-

refore can only be solved by taking the square root of a matrix.
Hence, our strategy is to choose a T̂0, which makes the non-orthonormality,〈

χ̂(L) | χ̂(L)
〉

− 1 ≡ Ô(L), (125)

so small, that we may use an expansion like (100) to find Ť0 and the correspon-
ding Hamiltonians Ȟ(M). Of these, Ȟ(L) equals the variational Hamiltonian (99)
with N substituted by L, and its eigenvalues are therefore correct to order 2L+1.
Expression (124) now tells us that:

T̂
(−1)L+1(†)L+1

0

〈
χ̂(L) | χ̂(L)

〉
T̂

(−1)L+1(†)L

0 = Ť
(−1)L+1(†)L+1

0 Ť
(−1)L+1(†)L

0 ,

which may be solved to yield:

Ť0 = T̂0

√
1 + Ô(L)

(−1)L+1

= T̂0

1 + 1
2 Ô

(L) − 1
8

(
Ô(L)

)2
+ ..

1 − 1
2 Ô

(L) + 3
8

(
Ô(L)

)2
− ..

(126)

Here, the upper result is for L odd and the lower for L even. Since Ô(L) will
be chosen small, and for L > 1 is usually of order (εi − ε1) (εi − ε0) as we shall
argue in (137) and (144), this transformation preserves the RL-character of each
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NMTO. The Hamiltonian matrix (122) is seen to transform like the overlap
matrix (124) with M substituted for L and, as a consequence,

Ȟ(M) − εM =√
1 + Ô(L)

(−1)L−M+1 (
Ĥ(M) − εM

)√
1 + Ô(L)

(−1)L−M+1

. (127)

Similarly, from (123):

Ǧ [0...M ]−1 = Ĝ [0...M ]−1
√
1 + Ô(L)

(−1)L−M+1

. (128)

A procedure for computing [1 +O]±
1
2 , which is more robust than the matrix

Taylor series (126), is included in our codes [60].

Choosing T̂0. Since the near-orthonormality conditions (108) merely fix the
geometrical average

〈
χ̂(M) | χ̂(M−1)

〉
of successive sets, the nearly orthonormal

scheme (122)-(124) only makes sense if the transformation T̂0 of the kinked
partial waves at ε0 is chosen in such a way that the non-orthonormality Ô(0)

is small compared with the unit matrix. The nearly-orthonormal scheme alone,
does not make the orthonormalization integrals

〈
χ̂(M) | χ̂(M)

〉
converge towards

the unit matrix, but make them behave like:〈
χ̂(M) | χ̂(M)

〉
∼

〈
χ̂(0) | χ̂(0)

〉(−1)M

.

This alternates with fluctuations depending on the size of
〈
χ̂(0) | χ̂(0)

〉
.

The first thing to do is therefore to renormalize the MTOs in such a way
that T̂ a†

0

〈
|φaRL|2

〉
T̂ a

0 = 1, instead of (47). Hence, the first choice is:

T̂ a
0 =

(
k̇a0

)− 1
2

(129)

where k̇a0 is the energy-independent diagonal matrix with elements〈
|φaRL (ε0)|2

〉
= K̇a

RL,RL (ε0) ≡ k̇aRL,RL (ε0) . (130)

Another choice is to start with a Löwdin orthonormalized 0th-order set:

T̂ a
0 =

(
k̇a0

)− 1
2 √

1 +Oa
−1

(131)

where Oa is the non-orthonormality of the 0th-order, renormalized MTO set:

Oa ≡
(
k̇a0

)− 1
2
K̇a

0

(
k̇a0

)− 1
2 − 1. (132)

This choice therefore corresponds to taking L = 0.



68 O.K. Andersen et al.

Test case: GaAs. We have tested this orthonormalization method for GaAs
using the minimal Ga spd As sp basis set and going all the way up to L = 3,
that is, to a CMTO basis with the properties that Ȟ(3) =

〈
χ̌(3) |H| χ̌(3)

〉
and〈

χ̌(3) | χ̌(3)
〉
= 1, so that Ȟ(3) is a 7th-order Hamiltonian. Ȟ(2) and Ȟ(1) are of

lower order, however, and neither of the three Hamiltonians commute.
We diagonalized Ȟ(L) for L = 1, 2, 3 and compared with the band structures

obtained with the corresponding non-orthonormal variational method discussed
in Sect. 3.2. Both starting choices (129) and (131) were tried, and both gave fast
convergence of the square-root expansions. The first choice which only requires
evaluation of a square root at the last stage (127) but whose non-orthonormality
Ô(L) is larger, was found to be the fastest [24].

Aleph-representation. The renormalization (129) is of the same nature as
– but simpler than (due to lack of energy dependence) – the one performed
in Subsection 2.3, where we went from phase-shift normalization to screening-
sphere normalization. That diagonal transformation was given by (45) for the
screened spherical waves, by (46) and (47) for the 0th-order MTOs, and by (49)
for the KKR matrix. Since we distinguished between those two normalizations
by using respectively Greek and Latin superscripts for the screening, e.g. α
and a, and since it is irrelevant, whether one arrives at a nearly orthonormal
representation from quantities normalized one-or-another way, it is logical to
label quantities having the integral normalization (129) by Hebraic superscripts,
e.g. ℵ as corresponding to the same screening as α and a. Although not diagonal,
and therefore influencing the shape of the kinked partial waves, also the Löwdin
orthonormalization (131) is an energy-independent similarity transformation,
and so is any of the following transformations:

φℵ (ε, r) ≡ φa (ε, r) T̂ a
0 χℵ(N) (ε, r) ≡ χa(N) (ε, r) T̂ a

0

Kℵ (ε) ≡ T̂ a †
0 Ka (ε) T̂ a

0 Gℵ (ε) ≡ T̂ a−1
0 Ga (ε) T̂ a−1 †

0

(133)

with T̂ a
0 arbitrary. From the latter energy-independent similarity transformation

of G (ε) , the non-Hermitian matrices L
(N)
n and E(N), which are given in terms

of G (ε) by respectively (73) and (81), are seen to transform like:

L
ℵ(N)
n = T̂ a−1

0 L
a(N)
n T̂ a

0 and Eℵ(M) = T̂ a−1
0 Ea(M) T̂ a

0 . (134)

This – (133)-(134) – has all concerned an energy-independent similarity trans-
formation of un-hatted quantities.

In order to ensure that the hatted quantities are independent of which repre-
sentation – a or ℵ – we start out from, e.g.

φ̂ℵ (ε, r) = φ̂a (ε, r) = φa (ε, r) T̂ a (ε) = φℵ (ε, r) T̂ℵ (ε)

and

Ĝℵ (ε) = Ĝa (ε) = T̂ a (ε)−1
Ga (ε) T̂ a (ε)−1† = T̂ℵ (ε)−1

Gℵ (ε) T̂ℵ (ε)−1 †
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where, from the latter, it follows that

L̂
ℵ(N)
n = L̂

a(N)
n and Ê

ℵ(M)
n = Ê

a(M)
n ,

it suffices to satisfy the relation:

T̂ℵ (ε) ≡ T̂ a−1
0 T̂ a (ε) , which leads to : T̂ℵ

0 = 1. (135)

In conclusion, under the substitution a → ℵ, all previous equations remain valid,
and the factors T̂ℵ

0 may be deleted.
The virtue of this notation is that, once we have decided upon the normaliza-

tion and the screening, we can drop the superscripts; and this is what we shall do:
From now on, and throughout the remainder of this paper, un-hatted quantities,
i.e. the kinked partial waves, the kink and the Green matrices, and the Lagrange
and energy matrices, are all supposed to have the integral (ortho)normalization
(129) or (131), that is, they are all in the Aleph-representation. All equations
derived previously are then unchanged, and T̂0 may be dropped.

Accuracies of Hamiltonians. The accuracies of the Hamiltonians depend
on the sizes of the corresponding non-orthonormalities. Specifically, since the
residual error of the one-electron energy after use of the variational principle (5)
for the set χ̂(M) (r),

Ĥ(M)vi = εivi + (εi − εM ) Ô(M)vi ,

is proportional to (εi − ε0)
2
.. (εi − εM )2 , neglect of the non-orthonormality,

leads to the error:

δε̂
(M)
i = (εi − εM ) Ô(M)

ii + O
{
(εi − ε0)

2
.. (εi − εM )2

}
, (136)

where Ô
(M)
ii ≡ v†

i Ô
(M)vi and O means at the order of. The goal should thus be

to reduce the non-orthonormality to:

Ô
(M)
ii = O

{
(εi − ε0)

2
.. (εi − εM−1)

2 (εi − εM )
}

because in that case, the error from non-orthonormality will be of the same order
as that of the residual error. This can usually only achieved for M = L.

The order of the non-orthonormality may be found by use of the difference
function:

χ̂(M) (r) − χ̂(M−1) (r) = φ̂ ([01] , r)
(
Ĥ(M) − Ĥ(M−1)

)
+ φ̂ ([012] , r)

×


(
Ĥ(M−1) − ε1

)(
Ĥ(M) − ε0

)
−

(
Ĥ(M−2) − ε1

)(
Ĥ(M−1) − ε0

) + .. ,
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obtained from (88) and where we should take Ĥ(m) ≡ 0 if m < 1. As a result:

Ô(M) =
〈
χ̂(M) | χ̂(M) − χ̂(M−1)

〉
=

〈
φ̂0 | φ̂ [01]

〉(
Ĥ(M) − Ĥ(M−1)

)
(137)

+
(
Ĥ(M) − ε0

)〈
φ̂ [01] | φ̂ [01]

〉(
Ĥ(M−1) − ε1

)(
Ĥ(M) − ε0

)
+

〈
φ̂0 | φ̂ [012]

〉
(
Ĥ(M−1) − ε1

)(
Ĥ(M) − ε0

)
−

(
Ĥ(M−2) − ε1

)(
Ĥ(M−1) − ε0

)+ ..

which is usually of order
(
Ĥ(M−1) − ε1

)(
Ĥ(M) − ε0

)
when M > 1.

To evaluate integrals like
〈
φ̂0 | φ̂ [01]

〉
we must transform to the original

representation using (119) and then use (102). In this way we get:〈
φ̂0 | φ̂ [01]

〉
= 〈φ0 | φ [01]〉 + 〈φ0 | φ1〉 T̂ [01] = K [[0] 1] +K [01] T̂ [01] . (138)

Remember, that we are using the Aleph-normalization (133), because this influ-
ences the right-hand sides. For a condensed mesh, (138) reduces to:〈

φ̂ |
.

φ̂

〉
=

〈
φ | φ̇

〉
+ K̇

.

T̂ =
K̈

2!
+ K̇

.

T̂ .

We shall conclude this study of the accuracy of the Hamiltonians in Eq. (145)
below.

6 Connecting Back to the ASA Formalism

What remains to be demonstrated is that the NMTO sets, χ(N) (r) , χ̂(N) (r) ,
and χ̌(N) (r) , of which the two former are based on Löwdin-orthonormalized
kinked partial waves at the first mesh point (131), and the last corresponds
to the L=1-set being orthonormal, are the generalizations to overlapping MT-
potentials, arbitrary N, and discrete meshes of the well-known LMTO-ASA sets
given in the Overview by respectively (1), (8), and (9).

Since in the present paper we have not made use of the ASA, but merely
a MT-potential – plus redefinition of the partial waves followed by a Löwdin-
orthonormalization – we merely need to show that the formalism developed
above reduces to the one given in the Overview for the caseN=1 and a condensed
mesh. In order to bridge the gap between the new and old formalisms, a bit more
will be done though.

N = 0, L = 0. For the 0th-order set we have:

χ(0) (r) = χ̂(0) (r) = φ0 (r) = φ̂0 (r) .
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All un-hatted quantities in the present section will correspond to using kinked
partial waves, transformed to be orthonormal at this first mesh point, ε0. That
is: All un-hatted quantities are in the Aleph-representation (133)-(135) with T̂ a

0
given by (131). In this representation all previously derived relations hold, and
in addition:

T̂0 = 1 and K̇0 = 1. (139)

Relating back to the Overview, this means that instead of the ASA-relation
(13), we have (133) with T̂ a

0 given by (131). The latter is the proper definition of
K̇

a−1/2
0 , now that K̇a

0 = 〈φa0 | φa0〉 is no longer diagonal. We now see that the un-
hatted quantities used in the Overview were, in fact, in the Aleph representation.

The overlap and Hamiltonian matrices for the 0th-order set are thus:〈
χ(0) | χ(0)

〉
= 〈φ0 | φ0〉 =

〈
χ̂(0) | χ̂(0)

〉
=

〈
φ̂0 | φ̂0

〉
= 1〈

χ(0) |H − ε0|χ(0)
〉
=

〈
χ̂(0) |H − ε0| χ̂(0)

〉
= H(0) − ε0 = −K0, (140)

and with the 0th-order set being orthonormal, the Hamiltonian is variational.
Hence, H(0) = Ĥ(0) is the first-order, two-center, TB Hamiltonian of the 3rd-
generation scheme.

N = 1, L = 0. For the LMTO set we have:

χ(1) (r) = φ0 (r) + φ ([01] , r)
(
E(1) − ε0

)
→ φ (r) + φ̇ (r)

(
H(0) − εν

)
,

where E(1) – as given by (90) – is seen to become the Hermitian, first-order
Hamiltonian H(0) given by (140) if the mesh condenses. This proves (1).

The Hamiltonian and overlap matrices were given in respectively (96) and
(97), and using now K̇ = 1 together with (102), we see that for a condensed
mesh〈

χ(1) |H − ε1|χ(1)
〉

→ −Ġ−1 G̈

2!
Ġ−1 = −K +K

K̈

2!
K

= H(0) − εν +
(
H(0) − εν

)〈
φ | φ̇

〉(
H(0) − εν

)
and 〈

χ(1) | χ(1)
〉

→ −Ġ−1
...
G

3!
Ġ−1 = 1 − K

K̈

2!
− K̈

2!
K +K

...
K

3!
K

= 1 +
(
H(0) − εν

)〈
φ̇ | φ

〉
+

〈
φ | φ̇

〉(
H(0) − εν

)
+

(
H(0) − εν

)〈
φ̇ | φ̇

〉(
H(0) − εν

)
,

which are exactly (7). Merely
〈
φ | φ̇

〉
is not a diagonal matrix of radial integrals

like in the ASA.
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The nearly orthonormal LMTO set is:

χ̂(1) (r) = φ̂0 (r) + φ̂ ([01] , r)
(
Ĥ(1) − ε0

)
,

and the two conditions:
〈
χ̂(0) | χ̂(0)

〉
= 1 =

〈
χ̂(1) | χ̂(0)

〉
, therefore lead to:〈

φ̂ [01] | φ̂0

〉
= 0 =

〈
φ̂0 | φ̂ [01]

〉
, and

〈
φ̂1 | φ̂0

〉
= 1 =

〈
φ̂0 | φ̂1

〉
.

Of these matrix equations, the first means that any φ̂RL ([01] , r) is orthogonal to
any φ̂R′L′ (ε0, r) . As a consequence, the leading term of the non-orthonormality
(137) vanishes. The non-orthonormality of this LMTO set is then:

Ô(1) =
(
Ĥ(1) − ε0

)〈
φ̂ [01] | φ̂ [01]

〉(
Ĥ(1) − ε0

)
, (141)

which by use of (136) shows that the errors of the Ĥ(1)-eigenvalues are:

δε̂
(1)
i ≈

〈
φ̂ [01] | φ̂ [01]

〉
ii
(εi − ε1) (εi − ε0)

2
. (142)

This is one order better than the error ∝ (εi − ε0)
2 obtained by diagonalization

of H(0), but one order worse than the error ∝ (εi − ε1)
2 (εi − ε0)

2 obtained
variationally using the LMTO set. Hence, Ĥ(1) is a second -order Hamiltonian.
From (122):

Ĥ(1) − ε1 = −G0 G [[0] 1]−1
G0 → −G

[
G̈

2!

]−1

G =

(
1 − K

K̈

2!

)−1

(−K) =
[
1 +

(
H(0) − εν

)〈
φ̇ | φ

〉]−1 (
H(0) − εν

)
,

which for a condensed mesh is exactly (8).
For the transformation (115) from the χ to the χ̂-set, we get by use of (123):

G [01] Ĝ [01]−1 = −G [01]G [[0] 1]−1
G0

→ −Ġ

[
G̈

2!

]−1

G = G2

[
G̈

2!

]−1

G =
[
1 +

〈
φ̇ | φ

〉(
H(0) − εν

)]−1

which – since from (102):
〈
φ̇ | φ

〉
=

〈
φ | φ̇

〉
– is exactly (8).

The transformation (119) of the kinked partial waves is most easily found
by using the orthogonality of φ̂0 (r) and φ̂ ([01] , r) together with (138). For a
condensed mesh, the result is simple:

.

φ̂ (r) = φ̇ (r) + φ (r)
.

T̂ = φ̇ (r) − φ (r)
〈
φ | φ̇

〉
= φ̇ (r) − φ (r)

K̈

2!
,
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and well known – see Eqs. (8) and (12). For a discrete mesh, things look more
complicated in K-language: From (138),

T̂ [01] = −K [01]−1
K [[0] 1] = −K [01]−1 1 − K [01]

ε0 − ε1
,

where the 2nd equation has been obtained by use of (154): F [[0] 1] = Ḟ0−F [01]
ε0−ε1 ,

together with: K̇0 = 1. For (119) we thus obtain:

φ̂ ([01] , r) = φ ([01] , r) + φ1 (r) T̂ [01]

= φ ([01] , r)
(
1 + (ε1 − ε0) T̂ [01]

)
+ φ0 (r) T̂ [01]

= φ ([01] , r)K [01]−1 + φ0 (r) T̂ [01]

=
{
φ ([01] , r) + φ0 (r) T̂ [01]K [01]

}
K [01]−1

= {φ ([01] , r) − φ0 (r)K [[0] 1]}K [01]−1 (143)

where from (102): K [[0] 1] = 〈φ0 | φ [01]〉 is the equivalent to the usual radial
integral and the new factorK [01] in the transformation is caused by the presence
of φ1 (r) rather than φ0 (r) on the right-hand side of the top line in (143).

In order to complete the identification of the nearly-orthonormal LMTO
representation for a discrete mesh with the ASA version (8) and (12), we need
an explicit expression for the third parameter, which is the matrix entering the
non-orthonormality (141). With the help of (143), and remembering that φ̂0 (r)
and φ̂ ([01] , r) are orthogonal, we get:〈

φ̂ [01] | φ̂ [01]
〉

= K [01]−1
〈
φ [01] | φ̂ [01]

〉
= K [01]−1

(
〈φ [01] | φ [01]〉 − K [[0] 1]2

)
K [01]−1

= K [01]−1
(
K [[01]] − K [[0] 1]2

)
K [01]−1

→
〈 .

φ̂ |
.

φ̂

〉
=

...
K

3!
−

[
K̈

2!

]2

,

where, in the third equation, we have used (102).

TB parametrization For tight-binding parametrizations of many bands over
a relatively wide energy range, it is usually important to have as few para-
meters as possible. Our experience [61,20] for the occupied and lowest excited
bands of semiconductors and transition metals is that the off-diagonal elements
of 〈φ0 | φ1〉 = K [01] , 〈φ0 | φ [01]〉 , and

〈
φ̂ [01] | φ̂ [01]

〉
may be neglected. This

is in the spirit of the ASA. We therefore need to tabulate only those few dia-
gonal elements, together with the single TB matrix H(0). These quantities may
then be used to construct for instance the Hamiltonian and overlap matrices〈
χ(1) |H − ε1|χ(1)

〉
and

〈
χ(1) | χ(1)

〉
. This is like in the ASA, but now, we neit-

her need this approximation nor a condensed mesh.
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N > 1, L = 0. The nearly-orthonormal QMTO set is:

χ̂(2) (r) = φ̂0 (r) +
{
φ̂ ([01] , r) + φ̂ ([012] , r)

(
Ĥ(1) − ε1

)}(
Ĥ(2) − ε0

)
with the non-orthonormality:

Ô(2) =
〈
χ̂(2) | χ̂(2) − χ̂(1)

〉
=

〈
φ̂0 | φ̂ [012]

〉(
Ĥ(1) − ε1

)(
Ĥ(2) − ε0

)
+

+
(
Ĥ(2) − ε0

)〈
φ̂ [10] | φ̂ [01]

〉(
Ĥ(2) − Ĥ(1)

)
+ .. .

This – together with (136) – shows that the eigenvalue errors of Ĥ(2) are:

δε̂
(2)
i ≈

〈
φ̂0 | φ̂ [012]

〉
ii
(εi − ε2) (εi − ε1) (εi − ε0) ,

which means, that Ĥ(2) is a second-order Hamiltonian like Ĥ(1), but different
from it. In general, for N > 1, the leading non-orthonormality is:

Ô(N) ≈
〈
φ̂0 | φ̂ [012]

〉(
Ĥ(N−1) − ε1

)(
Ĥ(N) − ε0

)
, (144)

as seen from (137). This means that Ĥ(N) remains a 2nd-order Hamiltonian
when N > 1, and that its eigenvalue errors are:

δε̂
(N)
i ≈

〈
φ̂0 | φ̂ [012]

〉
ii
(εi − εN ) (εi − ε1) (εi − ε0) . (145)

This is much inferior to the variational estimate obtainable with an NMTO basis.
Moreover, the same result would have been obtained had we started out from the
cheaper, renormalized scheme based on (129). Hence, with the present scheme
only the Hamiltonians H(M) with M ∼ L, have eigenvalues which are accurate
approximations to the one-electron energies.

N = 1, L = 1. We finally use the general procedure (125)-(128) to orthonor-
malize the nearly-orthonormal LMTO set considered above. The small parameter
– the non-orthonormality Ô(L=1) – is thus given by (141).

The transformation from the nearly to the completely orthonormal set is
obtained from (128), with L = M = 1, as:

χ̌(1) (r) = χ̂(1) (r) Ĝ [01] Ǧ [01]−1 = χ̂(1) (r)
[
1 + Ô(1)

]− 1
2
,

which is the generalization to discrete meshes and (overlapping) MT-potentials
of the first equation (9). The resulting, orthonormal LMTO set is:

χ̌(1) (r) = φ̌0 (r) + φ̌ ([01] , r)
(
Ȟ(1) − ε0

)
,

with the third -order Hamiltonian obtained from (127) with L = M = 1 as:

Ȟ(1) − ε1 =
[
1 + Ô(1)

]− 1
2
(
Ĥ(1) − ε1

) [
1 + Ô(1)

]− 1
2
.
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This is the second ASA equation (9).
For the transformation of the kinked partial waves, we have from (126):

φ̌0 (r) = φ̂0 (r)
[
1 + Ô(1)

] 1
2

and putting all of this together, we may obtain:

φ̌ ([01] , r) ≈ φ̂ ([01] , r) − φ̂0 (r)
(
Ĥ(1) − ε0

)〈
φ̂ [01] | φ̂ [01]

〉
,

which is a new result. Finally, we may check that:〈
χ̌(1) | χ̌(0)

〉
=

〈
φ̌0 | φ̌0

〉
+

(
Ȟ(1) − ε0

) 〈
φ̌ [01] | φ̌0

〉
=

1 + Ô(1) −
(
Ȟ(1) − ε0

)〈
φ̂ [01] | φ̂ [01]

〉(
Ȟ(1) − ε0

) 〈
φ̌0 | φ̌0

〉
≈ 1.

7 Outlook

Of the new developments described above, only the use of overlapping MT-
potentials and efficient computation of total energies and forces from TB-LMTO-
ASA charge densities were planned. Those parts turned out to be the hardest
and still await their completion. But on the way, we did pick up a number of
beautiful and useful instruments. Now that we have an accordion for playing
Schrödinger, maybe Poisson can be learned as well.
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9 Appendix: Classical Polynomial Approximations

Lagrange and Newton interpolation. In these interpolation schemes, a fun-
ction f (ε) is approximated by that polynomial of Nth degree, f (N) (ε) , which
coincides with the function at the N+1 energies, ε0, ε1, .., εN , forming the mesh.
The error is proportional to (ε − ε0) (ε − ε1) .. (ε − εN ) .

The expression for the approximating polynomial in terms of the N+1 values
of the function, f (εn) ≡ fn, with n = 0, 1, .., N, is:

f (N) (ε) =
N∑
n=0

fn l(N)
n (ε) , where l(N)

n (ε) ≡
N∏

m=0, �=n

ε − εm
εn − εm

(146)
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is the Lagrange polynomial of Nth degree. It has nodes at all mesh points, except
at the nth, where it takes the value 1. Since Lagrange interpolation is exact for
all functions εM with M ≤ N, the Lagrange polynomials satisfy the sum rules:
εM =

∑N
n=0 (εn)

M
l
(N)
n (ε) , for M = 0, ..., N.

The same approximating polynomial may be expressed as a divided difference
– or Newton – series:

f (N) (ε) =
N∑

M=0

f [0, ..,M ]
M−1∏
n=0

(ε − εn) (147)

= f [0] + f [0, 1] (ε − ε0) + ..+ f [0...N ] (ε − εN−1) .. (ε − ε1) (ε − ε0) ,

where the square parentheses denote divided differences as defined in the follo-
wing table:

ε0 f0 ≡ f [0]
f [0]−f [1]
ε0−ε1 ≡ f [0, 1]

ε1 f1 ≡ f [1] f [0,1]−f [1,2]
ε0−ε2 ≡ f [0, 1, 2]

f [1]−f [2]
ε1−ε2 ≡ f [1, 2]

ε2 f2 ≡ f [2]

In general, that is:

f [m,m+ 1, .., n, n+ 1] ≡ f [m,m+ 1, ., n] − f [m+ 1, ., n, n+ 1]
εm − εn+1

, (148)

where m ≤ n. Note that the two energies in the denominator are those which
refer to the mesh points not common to the two divided differences in the no-
minator. Also, note their order, which defines the sign. A divided difference,
f [0...M ] , is thus a linear combination of f0, f1, ..., fM . The divided differences
entering (147) are those descending along the upper string in the table, but other
forms are possible. Besides, the order of the energies need not be monotonic. In
fact, all divided differences of degree M + 1 involving M specific mesh points
are identical. This means that the order of the arguments in f [0, 1, .,M − 1,M ]
is irrelevant, as may be seen explicitly from expression (149) below. When we
have a long string of arguments, we usually order them after increasing mesh
number, for simplicity of notation.

We may express any divided difference, f [0..M ] , entering the Newton form
(147) as a linear combination of the fn’s with n ≤ M, and thereby establish
the relation to the Lagrange form (146). To do this, we apply both Newton
and Lagrange interpolation to a function, which we take to be that Mth degree
polynomial, f (M) (ε) , which coincides with f (ε) at the first M +1 mesh points.
This is allowed, because f [0..M ] is independent of the fn’s with n > M. In this
way, we get the identity:

f (M) (ε) =
M∑
m=0

f [0..m]
m−1∏
n=0

(ε − εn) =
M∑
n=0

fn l(M)
n (ε)
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and taking now the highest derivative, we obtain the important relation:

f [0...M ] =
M∑
n=0

fn∏M
m=0, �=n (εn − εm)

. (149)

The inverse relation, that is the expression for fn in terms of divided differences
for a (sub)mesh containing εn, is of course just the Newton series (147) evaluated
at the mesh point εn.

In order to factorize (φG) [0...N ] in expression (70) for the NMTO, we shall
need to express theNth-order divided difference of a product function, f (ε) g (ε) ,
in terms of divided differences on the same mesh of the individual functions. Since
the product is local in energy, we start by expressing its divided difference in the
Lagrange form (149):

(fg) [0...N ] =
N∑
n=0

fngn∏N
m=0, �=n (εn − εm)

.

For f (ε) we may choose to use the divided differences in the upper, descending
string of the table. We therefore use (147) to express fn in terms of the divided
differences on the (0..n)-part of the mesh and thereafter reorder the summations:

(fg) [0...N ] =
N∑
n=0

N∑
M=0

f [0..M ]
M−1∏
m′=0

(εn − εm′)
gn∏N

m=0, �=n (εn − εm)

=
N∑

M=0

f [0..M ]
N∑
n=0

∏M−1
m′=0 (εn − εm′)∏N
m=0, �=n (εn − εm)

gn.

Since
∏M−1

m′=0 (εn − εm′) = 0 for n < M,

N∑
n=0

∏M−1
m′=0 (εn − εm′)∏N
m=0, �=n (εn − εm)

gn =
N∑

n=M

∏M−1
m′=0 (εn − εm′)∏N
m=0, �=n (εn − εm)

gn

=
N∑

n=M

gn∏N
m=M, �=n (εn − εm)

= g [M..N ] ,

according to (149). We have thus proved the binomial formula:

(fg) [0...N ] =
N∑

M=0

f [0..M ] g [M..N ] , (150)

which expresses the Nth divided difference of a product on the (0...N)-mesh as
a sum of products of divided differences on respectively the (0..M)- and (M..N)-
parts of the mesh, with M being the only point in common. Hence, this formula
is in terms of the divided differences descending forwards along the upper string
for f, and the divided differences descending backwards along the lower string
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for g, but this is merely one of many possibilities. For the special case: g (ε) = ε,
we get the useful result:

(εf) [0...N ] = f [0..N − 1] + εNf [0...N ] . (151)

Since the numbering of the points is irrelevant, we could of course have singled
out any of the N + 1 points, not merely the last.

Newton interpolation has the conceptual advantage over Lagrange interpo-
lation that the 1st divided differences, f [n − 1, n] , are the slopes of the chords
connecting points n− 1 and n, and hence approximations to the 1st derivatives,
the 2nd divided differences, f [n − 1, n, n+ 1] , are ’local’ approximations to 1

2!
times the 2nd derivatives, and so on, as expressed by (71). For the mesh conden-
sing onto the one energy, εν , Newton interpolation becomes Taylor expansion,
which is of course simpler. An example of this is the binomial expression for the
Nth derivative of a product: For a discrete mesh, there are many alternatives to
(150), but for a condensed mesh, there is only one expression.

Hermite interpolation. It will turn out that the NMTO Hamiltonian and
overlap matrices are best understood and computed using the formalism of Her-
mite interpolation. Here, one seeks the polynomial of degree M +N + 1 which
fits not only the values, fn, at the N + 1 points, but also the slopes, ḟn, at a
subset of M+1 points. We shall number the points in such a way, that the M+1
points are the first. This polynomial is:

f (M+N+1) (ε) =
M∑
n=0

fn +

ḟn − fn

 M∑
m=0, �=n

2
εn − εm

+
N∑

m=M+1

1
εn − εm

 (ε − εn)


×l(M)

n (ε) l(N)
n (ε) +

N∑
n=M+1

fn l(M+1)
n (ε) l(N)

n (ε) .

For those interested in why this is so, here are the arguments: The product
of Lagrange polynomials

l(M)
n (ε) l(N)

n (ε) =
M∏

m=0, �=n

(
ε − εm
εn − εm

)2 N∏
m=M+1

ε − εm
εn − εm

,

with 0 ≤ n ≤ M, is of degree M +N. At a mesh point, ε = εn′ , this product has
value 1 when 0 ≤ n′ = n ≤ M, value 0 and slope 0 when 0 ≤ n′ �= n ≤ M, and
value 0 when M < n′ ≤ N. Since the slope is: M∑

m=0, �=n

2
ε − εm

+
N∑

m=M+1

1
ε − εm

 l(M)
n (ε) l(N)

n (ε) ,
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the polynomial of degree M +N + 1 :1 − (ε − εn)

 M∑
m=0, �=n

2
εn − εm

+
N∑

m=M+1

1
εn − εm

 l(M)
n (ε) l(N)

n (ε) ,

with 0 ≤ n ≤ M, has value 1 and slope 0 if ε = εn. If ε = εn′ �= εn, it has value 0
and slope 0 when 0 ≤ n′ ≤ M , and value 0 and some slope when M < n′ ≤ N.
The polynomial of degree M +N + 1 :

(ε − εn) l(M)
n (ε) l(N)

n (ε) ,

with 0 ≤ n ≤ M, vanishes at all mesh points, has slope 1 for ε = εn, slope 0
for ε = εn′ �= εn when n′ and 0 ≤ n′ ≤ M, and some slope when M < n′ ≤ N.
Finally, the product:

l(M+1)
n (ε) l(N)

n (ε) =
M∏
m=0

(
ε − εm
εn − εm

)2 N∏
m=M+1, �=n

ε − εm
εn − εm

,

with M < n ≤ N, is a polynomial of degree M +N +1. For ε = εn′ it has value
0 and slope 0 if 0 ≤ n′ ≤ M, value 0 and some slope if M < n′ �= n ≤ N, and
value 1 and some slope if M < n′ = n ≤ N.

What we shall really need is, like in (149), 1
(M+N+1)! times the highest deriva-

tive of the polynomial f (M+N+1) (ε). Calculated as the coefficient to the highest
power of ε, this Hermite divided difference is:

(M+N+1)

f (M+N+1)

(M +N + 1)!
=

M∑
n=0

ḟn − fn

(
M∑

n′=0, �=n
2

εn−εn′ +
N∑

n′=M+1

1
εn−εn′

)
M∏

m=0, �=n
(εn − εm)2

N∏
m=M+1

(εn − εm)

+
N∑

n=M+1

fn
M∏
m=0

(εn − εm)2
N∏

m=M+1, �=n
(εn − εm)

= lim
ε→0

f [0.....M +N + 1] ≡ f [[0...M ] ..N ] . (152)

In the last line, we have indicated that the Hermite divided difference may be
considered as the divided difference for the folded and paired mesh:

ε0 εN+1 ε1 εN+2 · · · · εM εM+N+1 · · εN

in the limit that the energy differences, εn ≡ εn+N+1−εn, between the pairs tend
to zero. In analogy with the notation for the divided differences, we have denoted
the (M +N + 1)st Hermite divided difference: f [[0...M ] ..N ] , which means that
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the mesh points listed inside two square parentheses have both fn and ḟn asso-
ciated with them, whereas those listed inside only one square parenthesis have
merely fn. Like for the divided differences, the order of the arguments inside a
square parenthesis is irrelevant, but for long strings we usually choose the order
of increasing n. For a condensed mesh,

f [[0...M ] ..N ] →
(M+N+1)

f

(M +N + 1)!
. (153)

As examples of Hermite divided differences we have:

f [[0]] = ḟ0 f [[0] 1] = ḟ0−f [01]
ε0−ε1

f [[01]] = ḟ0−2f [0,1]+ḟ1
(ε0−ε1)2 f [[ ] 0..N ] = f [0..N ]

(154)

In the NMTO formalism the Hermite divided difference (152) comes in the
disguise of the following double sum (92):

N∑
n=0

M∑
n′=0

f [n, n′]∏N
m=0, �=n (εn − εm)

∏M
m′=0, �=n′ (εn′ − εm′)

, (155)

which may, in fact, be viewed as a divided difference (149) – albeit in two dimen-
sions – but that brings little simplification. So let us prove that (152) and (155)
are identical: First of all, the ḟn-terms of the double sum (155) are those for
which n = n′, and they obviously equal those of the single sum (152). Secondly,
the fn-terms in (155) are:

N∑
n=0

M∑
n′=0, �=n

fn (εn − εn′)−1 + fn′ (εn′ − εn)
−1∏N

m=0, �=n (εn − εm)
∏M

m=0, �=n′ (εn′ − εm)
=

N∑
n=M+1

fn∏N
m=0, �=n (εn − εm)

M∑
n′=0

(εn − εn′)−1∏M
m=0, �=n′ (εn′ − εm)

+ (156)

M∑
n=0

fn∏N
m=0, �=n (εn − εm)

M∑
n′=0, �=n

(εn − εn′)−1∏M
m=0, �=n′ (εn′ − εm)

+

M∑
n=0

fn∏M
m=0, �=n (εn − εm)

N∑
n′=0, �=n

(εn − εn′)−1∏N
m=0, �=n′ (εn′ − εm)

.

Now, according to (149),

M∑
n′=0

1
εn−εn′∏M

m=0, �=n′ (εn′ − εm)
=

1
εn − ε

[0...M ] (157)
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is the Mth divided difference of the single-pole function 1/ (εn − ε) , provided
that n is not on the mesh 0...M. For the sum where n is on the mesh – but the
n′=n-term is excluded – we have:

M∑
n′=0, �=n

1
εn−εn′∏M

m=0, �=n′ (εn′ − εm)
=

M∑
n′=0, �=n

−1
(εn−εn′ )2∏M

m=0, �=n, �=n′ (εn′ − εm)

=
−1

(εn − ε)2
[0..n − 1, n+ 1..M ] . (158)

This result also holds if M is named N, and is therefore relevant for both of the
last terms in (156). We then need simpler expressions for the divided differences
of the single- and double-pole functions. Guided by the results:

1
M !

dM

dεM
1

εi − ε
=

1

(εi − ε)M+1 ,
1
M !

dM

dεM
1

(εi − ε)2
=

M + 1

(εi − ε)M+2 ,

for the derivatives, we postulate that for a discrete mesh,

1
εi − ε

[0...M ] =
1∏M

m=0 (εi − εm)
,

1
(εi − ε)2

[0...M ] =

∑M
n=0

1
εi−εn∏M

m=0 (εi − εm)
.

(159)

For M=0, these expressions obviously reduce to the correct results, (εi − ε0)
−1

and (εi − ε0)
−2

. For M > 0, our conjectures inserted on the right-hand side of
(148) and subsequent use of (149) yield:

1
εi−ε [0..M − 1] − 1

εi−ε [1..M ]
ε0 − εM

=
1∏M

m=0 (εi − εm)
=

1
εi − ε

[0...M ] ,

1
(εi−ε)2 [0..M − 1] − 1

(εi−ε)2 [1..M ]

ε0 − εM
=

M∑
n=0

1
εi−εn∏M

m=0 (εi − εm)
=

1
(εi − ε)2

[0...M ] ,

which are obviously correct too. Hence, equations (159) have been proved.
Using finally (159) in (157) and (158), and right back in (156), leads to the

fn-terms in (152). We have therefore demonstrated that:

N∑
n=0

M∑
n′=0

f [n, n′]
N∏

m=0, �=n
(εn − εm)

M∏
m′=0, �=n′

(εn′ − εm′)
= f [[0...M ] ..N ] . (160)

The final expression needed for the NMTO formalism, is one for the Her-
mite divided difference of the product-function εf (ε) . For this we can use (151)
applied to the folded and paired mesh. As a result:

(εf) [[0...M ] ..N ] = f [[0..M − 1] ..N ] + εMf [[0...M ] ..N ] . (161)

Since the numbering of the points is irrelevant, we could of course have singled
out any of the M + 1 points, not merely the last.
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